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I. INTRODUCTION

WHEN estimating the values of a number of recombination fractions
for various segments of a chromosome, from linkage data, it is often
the case that more than one body of data is available. The data
may relate to various sources, different types of crosses and consist
of parts supplying information for one or more of the segments. In
such cases, it is, obviously, desirable to combine the data in order
to make joint estimation of the parameters. The estimates, thus
obtained, are the most efficient when different parts of the data are
homogeneous which can, however, be directly verified by testing
whether the estimates closely fit in with the various parts of the data.

Fisher (1935) put forward a method of scoring which seems fitted
for general use where combination of data, tests of homogeneity and
pooled estimates are considered. This method consists of replacing
each body of data by appropriate scores and information which are
directly used in arriving at pooled estimates and tests of homogeneity.
In a paper Fisher (1946) used this method of scoring in estimating
three recombination fractions (arising out of two consecutive segments
and subject to Kosambi's (i4) restriction) from data which in parts
supply information only for the individual segments. If the data
giving the simultaneous segregation of three or more factors are
available then two questions arise. What is the most appropriate
method of scoring such data and how does it compare with the
alternative method of scoring for each recombination fraction by
considering the classification with respect to the two relevant factors
only and ignoring the rest? The latter method of scoring may be
called the individual segment method.
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When the simultaneous segregation of more than two factors has
been recorded, the scores obtained by the individual segment method
are less efficient in the sense in which Fisher (1935) defines efficient
scores. The estimates to which they lead differ from the maximum
likelihood estimates and hence are less efficient than the best estimates.
The purpose of this article is to study these problems in the simplest
case of scoring data on three factors arranged in eight phenotypical
classes.

Firstly, a method appropriate and efficient for such data has been
developed for the estimation of recombination fractions in the two
different situations, viz. (i) when they are taken as free parameters
and (2) when they conform to Kosambi's formula. Secondly, the
relative efficiencies of the estimates in each of the two cases obtained
by the individual segment method as compared with the above
method have been calculated in a particular case to measure the
loss in efficiency due to the individual segment method. The method
of efficient scores involves a slightly heavier computational procedure
and, though undoubtedly more efficient, can be recommended in
practice only when even a small gain in efficiency is of considerable
importance.

2. THEORETICAL ASPECTS OF THE METHOD OF SCORING
AND NOTATIONS

Let there be k sets of data, each part supplying information on
one or more of a set of p unknown parameters 61, 0, . . . ,
L1, L2, . . . Lk represent the probability densities of the observations
corresponding to the k sets of data then L, the likelihood of the
parameters, is defined by the product,

L=L1L2. . . L
The best estimates of the parameters are those values of O, . . . ,

which maximise the above expression. A formal proof of this
statement is given elsewhere (Rao, 1947). For convenience the
logarithm of L may be maximised. Differentiating log L partially
with respect to O, . . . , 0 and equating to zero we get

loLeloL10i
. . .

0i
—

i = I, 2, . . . ,

as the equations giving the desired estimates.
The above equations are usually non-linear and hence the direct

evaluation of the estimates is difficult. A general method is to start
with trial solutions and derive linear equations giving small corrections
to the trial values. The process may have to be repeated until the
corrections become negligible. If dO1, . . . , dO are additive correc-
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tions to trial values 9, . . . , O one derives the equations giving the
corrections as

_2logL0 2logL0 elogL
2 — _______

i1,2,. . . ,
where all the derivatives are calculated at the trial values. If the
sample is large we may replace _2 log L/aO1eO by its mean value

which is the same as I.. the mean value of ( log L log L at the
\ bO a6 /

trial values. The matrix I = (I) is called the information matrix
for the whole body of data at the assumed values.

The quantity log L/d01 is defined as the i-th efficient score
and since

loLbloLi oLk
90,

it follows that the efficient scores for the whole data are the sums
of the corresponding scores for the several sets of data. Similarly

I = . . +I
where I is an element of the information matrix for the r-th part
of the data.

Thus the problem of estimation reduces to replacing each part
of the data by the efficient scores and information matrix at some
trial values and finally obtaining the corresponding quantities for the
whole data by simple addition. These supply linear equations in
small additive corrections to the trial values.

It has been demonstrated in section 6 that the method of scoring
offers a quickly converging process and hence is extremely useful in
practice.

The scores for various parts of the data calculated at the best
estimates are directly useful in tests of homogeneity as explained in
sections 4 and 5 and illustrated in section 6. The theoretical aspects
of such tests are fully discussed by the author in (Rao, 1948).

J1otations.—

.Y2, .Y3 represent the recombination fractions in the segments
connecting the second and third, third and first and first and second
loci respectively.

Y' .Y2, Y3 are the maximum likelihood estimates when they are
treated as free parameters.

.Y, Y2, )3 are the corresponding estimates when Kosambi's formula
connectingy1,y2,y3 is used.
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are the efficient scores for Yi, Y2, .y3 treated as free
parameters from the k-th part of the data. When the data is arranged
as frequencies in certain classes, it is known that

= S
\1TYr

where S stands for summation, n for the frequency of a class and IT
for the corresponding probability. The total scores for the whole
body of data are represented by , (1)3., 1I3 represent the scores for Yi and y3 when Kosambi's formula
is used.

(i) and (I)) represent the information matrix per single observa-
tion and for the whole sample in the k-th part of the data. If n, is
the sample size then the relation (I) = k(i) is identically true.
It is known that,

\ir8yrLays aYr'7tYs

(Trs) or simply denoted by T stands for the total information
matrix (Trs) = S(I)).

The inverse of T is denoted by T j• The method of finding this
is to solve the equations

pT11+qT12+rT13 = i, o, 0
pT12+qT22+rT23 = o, x, o
pT13+qT23+rT33 = o, o, i

and take the three sets of equations as the three rows of T 1. J and J
stand for information matrices per single observation and for the
whole body of data when Kosambi's formula is used. All the above
quantities calculated at y, ), y and j, 52, y3 are represented with a
single dot and two dots above respectively.

3. SCORING OF DATA FROM BACK CROSSES AND
INTERCROSSES

The eight different gametes due to a triply heterozygous parent
can be classified into four complementary pairs, the members of each
pair having equal chance of being transmitted to an offspring. Let
the recombination fractions for the segments connecting the first and
second, second and third and third and first loci be represented by
y, y and y. Also let S0, Si, S2 and S3 represent respectively the
frequencies of gametes involving all three recessive genes, only the first,
only the second and only the third recessive gene. The S's and y's
are interrelated in the four types of heterozygotes as given in table i.
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TABLE i

S functions for the four types of triple heterozygotes

Function ofy's Gametic frequencies for heterozygotes

ABC AbC ABc aBC
abc aBc abC Abc

S0 S S3 S1
k(y2+y1—.y3) S3 S S S2
(Y3+Yl—2) S2 S0 S1 53

S1 S3 2
For a given set of recombination fractions one can, by using the above
table, calculate the S-functions for any type of heterozygote and use
them for further calculations as the probabilities, scores and information
matrix, in any particular situation directly depend on them.

(a) Triple back cross

The probabilities of the eight phenotypical classes and the appro-
priate scores, expressed in terms of S-functions, in the case of a back
cross of a triple heterozygote with a triple recessive are given in
table 2.

TABLE 2

Probabilities and scores in the case of a triple back cross

Scores for Observed
Phenotype Probability y y, y3 frequency

ABC S0 lI4So rn0/4S0 n0/4S0
AbC S2 12/4S2 rn2/4S2 n2/4S2 n101
ABc S3 13/4S3 m3/4S3 n3/4S3 n110
Abc S1 1/4S rn1/4S1 n1/4S1 n100
aBC S1 li/4Si m1/4S1 n1/4S1 no11
abC S3 13/4S3 rn3/4S3 n3/4S3 n001
aBc S2 12/4S2 m2/4S2 n2/4S2 n010
abc S0 l/S m0/4S0 n0/450 n000

The l's, rn's and n's of the above table are four times the derivatives
of probabilities with respect to .Yi, Yz and 3 respectively and their
values are determined by the following rule. The value of the
derivative of the probability for a phenotype with respect to y is

or according as the letters other than the i-th in the representation
of the phenotype is an old or a new combination, the old combinations
being determined by the representation of the triple heterozygote.
Thus in deciding the values of 10, l2, 13 and 11, one need only find
which of the combinations BC, bC, Bc, bc, are old and which are new
and take the i's corresponding to old combinations as —j and the
rest as + i. The values of these coefficients for the various types of
heterozygotes are given in table 3 for ready use.
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The efficient scores at any given values ofy1,y2 andy3 are obtained
by summing the products of observed frequencies and scores. The

TABLE

Values of the i's, rn's and n's of table 2

Heterozygote Values of the coefficients

ABC/abc 10 = 11 = m0 m2 = n0 = n3 = —

l2=13=m1==m3=n1=n2= I

AbC/aBc l2=13=m0=m2=n1=n2=—i
10=l1=m1=m3=n0=n3= I

Abc/aBC 10=11=m1=m3=n1=n2=—i
12 = 13 m0 = m2 = n0 = n3 = I

ABc/abC 12==l3==m1=m3=n0=n3=—i
10=11=m0=m2=n1=n2= I

elements of the information matrix (i5) per single observation for
given values of y, J2, y are the same for all types of back crosses.
They can be simply calculated by using the formu1

rr = (1\o+A1+12+A3) T = I, 2, 3= (Ao—A1—A2+A3)= (Ao+A1—A2—A3)
i13 = (Ao—Aj+A2—A3)

whereA = I/(2—J1—Y2—y3), \i '/Cy2+y3—y1), "2 =
and A = '/(Yj+J2--J3). It may be noted that the A's are fixed
functions of the recombination fractions and any S-function assumes
one of the values of A for a given heterozygote. These have been
introduced merely to simplify computations.

If the whole data consist only of results from back crosses the
maximum likelihood estimates can be obtained without the evaluation
of the efficient scores. It is easily seen that for such data the equations
giving the best estimates are

(o)Ao+(r)A1—(I2)A2—(2)A3 = 0
(o)Ao—(I)A1+(I2)A2—(2)A3 = 0
(o)AO—(I)A1—(I2)I\2+(2)A3 = 0

where (o), (i), (2) and (12) are the totals of observed frequencies
from all sets of data corresponding to no cross overs, cross overs in
the first segment only, cross overs in the second segment only and
double cross overs respectively.

These equations yield the solutions

(o)A0 = (x)A = (I2)A2 = (2)A3
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or, writing in terms of they's, they become

(o) = (r) = (12) = (2) =
2-)'1—J2—)3 Y2+Y3—Y1 y1+y3—y2 ,1+2—.v3
(I)-4—(12) = (2)+(12) = (I)—f—(2) = (o)—l—(I)—j—(2)—l—(12) = N

2J3 2y 2.Y2 2 2

— ()——(i) (i)—+-() — (I)—4—(12)
encey1— N Y2— N N

The above estimates fory1,y2 andy3 are the same as those obtained
by considering the data as classified according two factors each time.
Thus ) could be obtained by considering only the second and third
factors and ignoring the classification due to the first factor. Thus a
complete classification with respect to three factors in the case of
back crosses does not suppiy additional information so far as the
problem of estimation of recombination fractions in various segments
is concerned. This is true with more than three factors also.

The variances and covariances of the above estimates are

V( _'(' —yr) f \ )'(' —•y2) / \ J3(I _y)
N ' '21 —

N ' —
N

Coy. C1J2) Y1+)'2_Y32Y1Y2 Coy. C2Y3) )'2+Y3Y12)'2)'3

Coy. (j1j3) y1+y3—Y2—291Y3
2N

(b) lntercross of a triple heterozygote

The frequencies and their derivatives in terms of S-functions for

any type ofintercross are given in table 4.

TABLE 4

Frequencies and their derivatives for an intercross

Phenotype Probability Derivatives

alT air air

Y2 Y3
ABC 1+S0+S+5+S 10(S0+2S1) mo(S0+2S2) n0(50+2S3)
AbC S2—S+2S1S3 12(S0+251) m2S0 n2(S0+2S3)
ABc S3—S+2S1S2 13(S0+2S1) m3(50+2S2) n3S0
Abc S+2S1S0 11(S0+2S1) m1S0 n1S0
aBC S1—S+2S2S3 11S0 m1(S0+2S2) n1(S0+2S3)
abC S+2S3S0 13S0 m3S0 n3(S0+2S3)
aBc S+2S2S0 12S0 m2(S0+2S2) n2S0
abc S 10S0 m0S0 n0S0

The i's in the column for &TT/8y1 are —4 or 4 according as the
factors other than the first in the representation of the corresponding
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phenotypes form old or new combinations. These can be readily
obtained from table 3 by replacing unity by 4-. The appropriate
scores, which are used in the calculation of efficient scores, for any
class, are calculated by dividing the derivatives by the class probability.
The information matrix is evaluated by the formul

I i bIT \ birI =nSi—--i----17
\Yr1bYr
I' bir\ &r bIT /' bir

k= nS ——— =nS——
—

T \Yr/bYk Yr-Yk
where n is the total of observed frequencies. The maximum likelihood
estimates, in this case, are obtained by successive approximations
as explained in the next section.

4. MAXIMUM LIKELIHOOD ESTIMATES OF THE RECOMBINATION
FRACTIONS TAKEN AS FREE PARAMETERS

When the data from various sources and different types of crosses
giving information on only one or all the three recombination fractions
are available, there arise the problems of obtaining the best estimates
from the combined data and testing homogeneity of different .parts
of the data. The numerical computation of the above problems
can be arranged as follows. To start with the scores and the informa-
tion matrix, at the approximate values of y, )2' Y3 are calculated
for separate portions of the data as shown in table 5.

TABLE 5
Efficient scores and information matrix at the approximate values

Source and type Efficient scores Information matrixof cross
.g(1) J(1) J(1) (1) (1) (1) (1) (1) (1)
'P1 'P2 'P3 11 12 13 22 23 33

Ic .J(k) j,(k) (k) j(k) J(k) J(t-) J(k) j(lc) (Ic)
'P1 'P2 'P3 11 12 13 22 23 33

Total 1 2 c3 T11 T12 T13 T22 T23 T33
In the above table, if any part of the data gives information for

only one segment, say the first, then only q3 and 133 are present and
the rest are zero for that part. The methods of scoring in such cases
have been fully discussed by Fisher (3946) and Bhat ('947) and also
illustrated in this article in section 7 (c). For scoring parts of the
data giving the simultaneous segregation of three factors the expressions
derived in section 3 may be used.

Using the totals of table 5, the three linear equations in dy1, dy2
and dy3, which are additive corrections to the first approximations of

.Y1,.Y2 andy3 respectively, can be written

T11 dy1+T12 dy2+T13 dy3 =
T12 dy1+T22 dy,+T23 dy3 =
T13 dy1+T23 dy2-f-T33 dy3=3
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These calculations require to be repeated until the values of )i,
.Y2 andy3 for which the total scores are negligible are obtained.

If the scores and information matrix for the i-tb part of the data
at the estimated values are represented by

, and (f)
then using the elements of the matrix (Ia)) reciprocal to (J)) a
can be calculated by the formula

= SS I()
If the i-th part of the data concerns only two of the factors, say the
first and second, then x is simply [)]2/J. To test for heterogeneity
the total

x2=x+... +x
can be used as x2 with degrees of freedom

d1+ . . . +d—
where d2 = i or 3 according as the i-tb part of the data relates to
the segregation of only two or three factors. A significant x2 at a
chosen probability level indicates that different parts of the data are
not homogeneous.

5. MAXIMUM LIKELIHOOD ESTIMATES SUBJECT TO
KOSAMBI'S FORMULA

The general formula tanh 2X = 2) giving the relation between the
map distance x and the recombination fractiony is given by Kosambi
(i94.4). In terms ofy1,y2 andy3, the relation becomes

— _____

There are only two parameters y and y to be estimated, the third
one, )2, being obtainable from the above formula. The scores and
information matrix fory1 andy3 can be conveniently calculated from
the corresponding expressions fory1,y2 andy3 taken as free parameters
and in any practical problem the data may be scored fory1,y2 andy3
taken as free parameters and then the appropriate scores fory1 andy3,
when Kosambi's formula is applicable, can be deduced. If and
represent the total scores fory1 and y and J11, J13, J33, the elements
of the information matrix then the formuhe connecting them with the
totals of table 5 are

1=(I_4y)I(I+4yy3)2= 3+f32 /L3 (i —4y)/(I +4)1)3)2
J11 = T11+21T12+T22
J13 = T13+ 1T23+3T12+13T22= T33+23T23--4T22
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The additive corrections dy1 and dy3 to approximate values of
.yj andy3 are obtained from the equations

J11 dy1+Jj3 dy3 =
J13 dy1+J3 dy3 = /t3

If2 is the total score fory2 and (TTh) is the inverse of the total
information matrix calculated as in table 5 fory1,y2,y3 at the estimated
values f, ), j', subject to Kosambi's formula, then

= 2(T22+pi"+/.LT33+2jL1p3T'3 —2p1T12 —2L3T23)

can be used as x2 with i d.f. to test the agreement with Kosambi's
formula. The estimates, obtained subject to Kosambi's formula, are
valid only when the above test does not show significance.

6. AN ILLUSTRATIVE EXAMPLE

The methods developed in sections 3, 4 and 5 are applied to the
linkage data for Primula sinensis reproduced from a paper by de Winton
and Haldane ('935).

The data chosen consist of two types of back crosses so that exact
values of maximum likelihood estimates could be obtained. The
method of scoring can also be applied, starting with some trial values,
and the first approximations which, in this case, must be identical
with the exact values may be obtained.

The trial values chosen are = 35, y = •39, y3 = O7 so that,
A0 = I/(2—)1)2)3) = 1/1.19 = .840336
A1 = 'I(12+Y3—Yi) = '/ •II = 9.090909= '/(.y1+y3—y2) = 1/ .03 = 33.333333
A3 = '/(.y1+-y2—y3) = / 67 = t492537

The A's are one-fourth of the reciprocals of the S-functions so that for
any back cross the scores given in table 2 are obtained by multiplying
the A's with the appropriate values of the i's, rn's and n's given in table 3.

TABLE 6

Linkage data of SBL in Primula sinensis ( side)

sbl SBLSetI —><--—--
sbl sbl

Phenotype
Observed Type of Scores for

Multiplierfrequency cross over j1 .' y,
SBL 457 (o) — — — •84o336 =
SbL ii (ia) + — + 33333333 = i/4S2
SB! 256 (2) + + I492537 =
Sb! 38 (I) — + + 9.090909 =
sBL 45 (I) — + + 9090909 = i/4S1
sbL 284 (2) + + — 1492537 = I/4S3
sBl 20 (12) + — + 33333333
sbl 469 (o) — — — 84o336 =

1580



SCORING LINKAGE DATA 47

Phenotype

SBL
SbL
SB1
Sbl
sBL
sbL
sBl
sbl

Type of
cross over

(2)
3 (I)

50 (0)
1 (12)
I (12)

57 (0)
4 (I)

26 (2)

163

SB1

Scores for
Yi J2 .Ys+ + — 1.492537
— + + 9.090909
— — — •84o336+ — + 33333333+ — + 33333333
— — — •84o336
— + + 9.090909+ + — 1.492537

= i/4S0
=
= 1/4S3
=
=
=
= i/4S2
=

The exact values from the combined data are given by

(2)+(I2) = (256+284+11 +20)+(21 +1+1+26)
N 1580+163

— 620— = .355709
'743

___ =2i______ = 388411
'743

(I)+(12) = = 070568
N 1743

The efficient scores at the trial values.

Set I 3O66O6720 —250969032 2o3757654
Set II —16.736410 —22.797016 —29762162

Total = 28987031o —273766o48 173995492

If the data contained some parts giving only two factors segregations
then the scores arising from them have to be added to the above values.
Such data can supply only one of the efficient scores, the others being
considered as zero. In such cases the appropriate scores for intercrosses
are given on p. 6i and for back crosses on p. 58 in Mather's book,
The Measurement of Linkage in Heredity (first edition).

The information matrix per single observation is the same for both
the above sets at the trial values.

T = (1580+163)
22378557

—20.045685
11.795111

—20045685
22 378557

—12447312

II 79511
—12 447312

22378557

Set II

Observed
frequency

21

Multiplier

(I)+(2)
J2 N

i11 = i22 = i33 = (A0+A1+A,+A3) =
= (A0—A1—A2+A3) =
= (A0+A1—A2—A,) =
= (A0—1+A2—3) =

The total information matrix T is

22 378557

—20.045685
—12447312

II 795I II
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and its inverse is

= I / 227500 198500 —009500
1743 ( .198500 .237900 027700

\—.oo9500 •o27700 .065100

The corrections to trial values are given by
dy =

= [75(973)95(7374)
—0O95(I73995492)] = 00570953

= ___[ 1985( )+2379( )

'743
+0277( )]

= —O0I58922

dy3 = 7[95( )+o277( )

+0651( )] = .000567990
The firstapproximations to trial values 35, 39, 07, are

.355709, .38841 I, .070568

agreeing accurately up to the number of significant figures maintained
in the calculations with the exact estimates

355709, .388411, .070568
obtained earlier. This is not generally true but if the trial values of
the cross over percentages can be correctly guessed to the nearest whole
numbers the first approximations obtained by the method of scoring
are expected to be sufficiently accurate.

The test of the hypothesis that the two sets of data arise from
identical values of recombination fractions involves the evaluation of
the scores and information matrices at the estimated values. The
new scores can, however, be obtained approximately by certain
adjustments of the scores at the trial values. The change in the matrix
inverse to the information matrix is negligible so that no adjustment
is necessary. But in cases where approximations differ considerably
from the trial values it is necessary to calculate the scores and
information matrix directly.

The adjusted scores for the first set are

(1) = 1—n1(dyii11+4y2ii2—]—dy3ii3)
= 2898703Io—1580[22378557(o057o9)—2O045685(—.00I589)

+11.79511 I(.000568)]
= 2898703I0—262771854 = 27.098456
= —273766048—I580[—20045685( )+22•378557( )

—12.447312( )J
= —273766o48+248171256 = —25594792
= 173.995492—158o[11795111( )—12.447312( )

+22178557( )]= I73995492—I57728377 = 16•2671I5
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The value of x is,

= 5irl))
= .2275(27.0984)2+.237925.5948)2+.o65116.2671)2

1985)( 270984)(—255948')
+2(—OO95')( )( 16.2671)
+2( 0277)(—25.5948)( )1

= 3337 = •02113.
1580

Similarly
= —27O98456, 2) = 25594792, = —I6267II5 and
= 33.3807 = 2048.

The total 2 = o2II+2o48 = 2259 is considerably
smaller than its expectation 3+3—3 = 3, the degrees of freedom.
The two sets of data may be regarded as homogeneous.

The variances of the estimates from the combined data are given
by the diagonal elements of the matrix T-1.

V,)1) = .2275/1743 = 103(.130522)
V)2) 2379/1743 = IO3(.136489)
V(3) = .0651/1743 = 103(.037349)

These are only approximate values, the exact values being obtainable
from the inverse of the information matrix calculated at the estimated
values.

If Kosambi's formula is assumed, there are only two parameters
y1 and y to be estimated. The appropriate scores and information
matrix in this case are calculated from the values obtained before for
1, ) and y considering them as free parameters. The trial values of
.Yi Y2 andy3 are the same as before. To start with calculate

— I—4Y — ______
2' 2('+4Y1J3) ('+y1y3)

= 980400 = .510000
I 205604' I 2056O4

= •8132o2 , = 423O24
= .661297 /L/J = 144004 , /4 = 178949.

The efficient scores and are,
=
= 28987o3IO+8I32O2(—273766O48)
= 672432II
=
= 173 995492 + 423024( —273.766048)= 58185880

p
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Information matrix for Yi, y•
= 111 113 133

+t,.. 22.378557 11.795111 22.378557

tli t13 t33

+Pr/1st22 14798873 76983I3 4004620
2 2/L1 22 IlI3 22 P3 22

—16•3o1 191 —8•4798o6 —52655I2
/L3t12 /L3t23

+Pstr2 —16•3o1191 —10122179 —52655I2
1j1t23 1j3t23

Total 4575048 .891439 15852153

— ( 4.575048 '891439—
743k .891439 I5852I53

T—1 — / .220998 —.012428—
r743—'012428 063782

The additive corrections toy1 and y3 are given by

dy1 = -_i_-['22o998(67•243211)—.012428(58•18588ofl

= 14137481/I = oo8irioo

dy3 = __[—.oI2428( )+o63782( )]

= 2875513/1743 = •000164975

so that the estimates ofy1 and y3 are

358111 and '070165

and the estimate ofy2 as obtained from the formula is

= (91+J3)/(' +4)'1j'3)
= (.428276)/I.Ioo5o7 = 389162

which differ very slightly from the estimates obtained by treating
they's as free parameters. The goodness of fit of Kosambi's formula
to the cross over values indicated by the data may be tested as follows.

This needs the evaluation of the total efficient score at these
estimated values. As before, a good approximation to this value can
be obtained by using the formula

= 2—N[i21(91—'35)+i22(j2—'3g)+i23(.93—.o7)= —273766048-—I743[—20045685('0o8III)
+22i78557(—'000838)—-I24473I2(.0O0I64975)

= —273766o48+3I966I9I2
= 45.895864

i 1V(2) —
'

[j22+2j11
= Io—(.27o694).
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The quantity
= ()2/V() = (45.895864)2 X Io-4(.27o694)= 0570

can be used as x2with one degree of freedom to test Kosambi's formula.
The observed x2 is very small, thus indicating fair agreement with
Kosambi' s formula.

The variances of the estimates obtained by using Kosambi's
formula are,

V(y,' _ = y2o998 = Io—3(.126791)

V(93)
j33 = .063782 = Io-(o36593)

ji12pjp3jl3+/4j33 .149008
V(y2) = —

N
=

5743
= Io(o85489).

By comparing these variances with those obtained before, we find
the percentage increase in efficiency by using Kosambi's formula as

294, 59.66, 2O6

fory,,y2 andy3 respectively.

7. THE INCREASE IN PRECISION BY THE USE OF
EFFICIENT SCORES

In the previous sections, methods have been developed for the
appropriate scoring of data relating to the simultaneous segregation
of three factors. It is, however, of importance to calculate the gain
in efficiency by following this method instead of replacing the data
by three marginal distributions obtained by ignoring one factor each
time and treating the distributions as independent. In such a case
the data can be scored by considering only one segment at a time.
It is seen in section 3 that this makes no difference in the case of
back crosses. The general investigation of this problem in the case
of 2 intercrosses is difficult but an example may be considered to
give an idea of the increase in efficiency.

Let the data consist of the results of the F2 of — classified in
aBc

eight phenotypical classes. The variances and covariances of the
estimates, from the data of the above type of .y1, y, y considered
as (i) free parameters and (2) subject to Kosambi's formula, can be
calculated in each case by using (a) the method of efficient scores
and (b) the individual segment method, and the relative efficiency
of the method (b) in each case can be found out. The following are
the calculations in the particular case wherein the recombination
fractions are = 28 andy2 = 30.
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(a) Method of efficient scores taking y's as free parameters

Using table 4, the appropriate S-functions for the triple hetero-
zygote AbC/aBc are calculated at the above chosen values.

S3 = (Y2+Y3—Y1) = .0125
S2 = 1(2—ya—y2—yj) = 3475
S1 = 1(Y2+.,'1—Y3) .1375
S0 = = o025

5000 (check)

The values of the i's, rn's, n's of table 3 with i replaced by are

l2=i3—m2=m0=n2——n1=—
11=10==rn1=m3=n0=n3=

The probabilities, derivatives and scores are given in table 7.

TABLE 7

Probabilities and scores

Derivatives and scores

Phenotype Probability
—_________ —

I

b,r I7T I3,T I 191T &IT I 817
1617 i6- —

i6- —-

ABC 6277s 222 •353666 —638 —888g •22 •O25O48AbC 36829 —222 —6o2788 —O2 —005430 —22 —0298681ABC P7265 —222 —P285838 6•38 3231970 02 OI1584Abc 3135 222 7081338 63796o —.o2 —63796o:aBC 20365 02 o09820 638 273992o — 22 — I08028abC OO35 — 02 —5714286 02 5714286 22 6285714oaBc s959g —02 —o1o2o4 —638 —a847o84 —02 —o182o4abc 0001 02 2O0OOOOOO — 02 —200000000 02 200000000

s6oooo o.oo 000 000

The information matrix i, per single observation, can be calculated by
using the formul of section 3 (b). Thus

= [2.22( 353666)+... +o2( 200000000)] = 155o821,

i12 = j[22(—•888g44)+... +O2(—2000o00O0)] = —•812331,
etc. / 1550821 —•812331 173998i = ( —.812331 3642891 —213733\ .173998 —.213733 1117181

The covariance matrix v, per single observation, of the maximum
likelihood estimates obtained by choosing such values ofy, Y2, )'3
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which make the scores for an observed set of frequencies vanish, is
the inverse of the information matrix.

/ .737882 -159589 —.084391
v = ( 159589 -312139 -03486!

\—-o84391 .034861 -914923

(b) Method of efficient scores y's being subject to Kosambi's formula

The information matrix j, per single observation, for y1, y in this
case is obtained from i, calculated above, by using the formula given
in section 5 and illustrated in section 6.

The procedure of computation is as follows :—

/Jj = .93267I , = -642498

Irs Ill 113

rs 1.550821 .173998 1.117181
PrPs22 3168852 2182996 1.503807
Is2 —757637 —521921 —.137323
P's2r —.757637 — 199342 —137323

Total 3204399 1.63570! 2346342

The covariance matrix u, per single observation, of the estimates of
y andy3 is the inverse of j.

— ( .4447 —337738—
\—.337738 -661642

Ify1 andy3 are the estimates ofy1 andy3 then, substituting these values
in Kosambi's formula, we get j2, the estimate of )2. The variance
of2 is calculated by the formula,

V(j2) -48447! (.93267 I)2_2( 337738) (.932671) (.642498)

+66I642(642498)
= •289786 per single observation.

(c) Individual segment method taking y's as free

In the individual segment method, only two factors are considered
each time and the data are scored for the corresponding recombination
fraction. The results of the cross AbC x aBc supply data in repulsion
for the estimation ofy3 andy1 and in coupling fory2. To score fory1,
it is necessary to consider the scores appropriate to data in repulsion
as given in Mather's book, The Measurement of Linkage in Heredity,
p. 6 i (first edition). The observed frequencies in the eight pheno—
typical classes are represented by nIJk as in table 2. Ignoring the
classification with respect to the first factor we get the scores aty1 =

D2
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in the four phenotypical classes and observed frequencies as given
in table 8.

TABLE 8

Scores in repulsion at y1 = 28

Phenotype Observed frequency, ignoring Scoresthe first factor

BC n111+n01 •269438
Bc +n010 —6o7639
bC nlol+nool —•6o7639
bc flioo+flooo 7142857

If the total score for Ji by this method is represented by Q1, then
= •269438(n111+n011) — •6o7639(n110+n010+n101+n001)

+7 142857(n100+n000)
The scores fory2 and y are similarly calculated.

Q = — .5S2249(fl1 +n101) +2 '745098(n110 +n00 +n011 +n001)
—2857 143 (n010 +n000)= .029986(fl111+fl110) — .060054(fl +n100 +n011 +n010)

+66 66€667(n001 +n000)

The estimate of y is found, by this method, by choosing that
value of y which makes the score Q. zero for the observed set of
frequencies. The estimates differ from the true values unless the
frequencies are the same as their expected values. If the probabilities
of given departures of the Q's from their expected values or simply
their sampling errors in large samples are known, then the corres-
ponding errors introduced in the estimate can be calculated. Since
the Q's are linear functions of the frequencies in the eight phenotypical
classes with probabilities as given in table 7, the covariance per
single observation, between Q1 and Q3 can be calculated (as given
in Fisher's Statistical Methods, p. 303, ninth edition) by taking the
triple products of coefficients of the frequency for any class in Q2 and
Q and the probability for that class and summing over all the eight
classes. Thus

= __[(.269438)2(6.277j +2O365) + (.607639)2(1 7265 + I 9599

+36829+OO35) +(7142857)2(.3135+.000l) I= P207860.

The matrix m = (m1), thus calculated, comes out as

/ i•o86o 526986 —•oo2269
m = ( .526986 31I8356 046039

\—.oo2269 046039 P002248

The covariance of the estimates ofy andy is given by m1/m11m
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so that, using the above elements, we can set up the covariance matrix
v * of the estimates ofy1,y2,y5.

/ •8279o7 139913 —•oo1874
v *

( 139913 .320680 01473I

\—.oo1874 .014731 997804

(d) Individual segment method, y's being subject to Kosambi's formula

In this there are two parameters, and y, to be estimated. The
scores P1, P3 fory1 and3 by this method are,

P1 = Q1+iiQ2
P3 = Q+i3Q2

so that, knowing Q1, Q2, Q3 considered above, and the differential
coefficients p, the P's can be calculated. As the covariances of
the Q's are known the covariances of P's can be calculated as follows

V(P1) = V(Q1) +ii V(Q2) +2i Coy (Q1Q2)
= I.207860j(.93267I)2(3.I18356)+2(.93267I)(.526986)
= 49o3438.

Coy (P1P3) = Coy (Q1Q) -j-j Coy (Q2Q.)+ Coy (Q1Q2)
+1i13V(Q2)

= 2247897.

Similarly

V(P3) = 2348684.

Thus d, the covariance matrix, per single observation, of P1, P3 is

d — (4.903438 2247897
— 2247897 2348684

If the Qs are independent, i.e. if three sets of data containing
the same number of observations as the total in the case were
independently observed for the three segments separately, then the
individual segment method is the most efficient method. In this
case the covariance matrix a, per single observation, of P1, P3 is
obtained from the above calculations by dropping the covariance
terms. Thus

V(P1) = I .207860+(.932671)2(3.I 18356)
= 3920430

and
a — (3.920430 186864o—

x•86864o 2289524

Its reciprocala gives, when the Qs are independent, the covariance
matrix of the estimates obtained by choosing values of y and y
which make the scores P1 and P3 vanish. This, on calculation, comes
out as

a1 — .417483 .340737

_.34J737 714871
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When the Q's are not independent the estimates, obtained by choosing
such values of y and y3 which make the scores P1 and P3 for the
observed set of frequencies vanish, have the covariance matrix u *
given by

u * = a'da-'
This is a triple product of the matrices a', d and a-'. To evaluate
this the product a'd may be found first and then multiplied by a-'.
The method of multiplying two matrices is to construct a matrix
whose element in the i-th row and the j-th column is the sum of
products of the ordered elements in the i-th row of the first matrix
and j-th column of the second matrix.

* — ( 417483—
34Ø737

—340737\( 49o3438
.714871/k 2247897

2.247897\
2348684/

— ( I28II6O—
k—•o63827

.138175\( 437483

.933064) k— 340737
—.340737

.714871

— ( 48778I—
\—•337761

— .337761

•674472

The variance, per single observation, of the estimate ofy2 as calculated
from the formula given in section 7 (b) is

(.487781)(.932671)2_2(.337761)(.932671) (.642498)
+(.674472)(.642498)2 •297933

A comparison is made below of the covariance matrices v, v ,
u, u * of the estimates obtained by the four methods discussed above.
Choosing the variances alone we have the comparisons as shown in
table 9.

TABLE 9

Variances of estimates and relative efilciencies

Method

) Efficient scores
I) Individual segment

Variances of estimates ofy's treated as Percentage
increase m

efficiency due
to Kosambi's

formulaFree parameters Subject to Kosambi's
formula

)'i

737882
8279o7

J
312139
32068o

)'3

914923
997804

Ji

48447I
487781

Y2

289786
297933

Ya

661642
674472

Yi

5230
6973

i's

771
763

i's

382
47'9

') Relative efficiency
xxoo 8gi2 9734 9169 9932 973 98Io ...

A measure of overall efficiency can be obtained by comparing
the covariance matrices of the estimates by the two methods. Instead
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of the simple ratio of the determinants, its s-th root, where s is the
number of parameters estimated, may be defined as the relative
efficiency of one method as compared with another. Thus, when
y's are considered as free parameters the overall efficiency of the
individual segment method is

v * — J.I83367* 3

liJJ
— 'J7478 = .9077 or 90,77 per cent.

The corresponding efficiency when y's are subject to Kosambi's
formula is

{
i1ij} = .980! or 98.01 per cent.

The overall increase in efficiency by using Kosambi's formula can
be calculated by comparing the covariance determinants of the
estimates ofy1 and ,y alone. This increase for the method of efficient
scores is

.737882 .I73998

.173998 .914923 —I = 79.89 per cent.
uj

and for the individual segment method

•8279o9 —'ooI874
.001874 9978O4 —I = 9606per cent.

I
U *

These calculations lead to the following conclusions, (i) The

use of Kosambi's formula, when applicable, considerably increases
the efficiency of the estimates by either method. In the particular
example chosen the overall increase in efficiency is 7989 per cent.
for the most efficient method and 9606 per cent. for the individual
segment method. (2) The loss of efficiency due to the simpler analysis
of the individual segment method is smaller when the recombination
fractions are estimated with the use of Kosambi's formula. In the
above example the overall efficiency of the individual segment method,
when y's are considered as free parameters, is 9077 per cent. which
increases to 98'OI per cent, when ,y's are subject to Kosambi's
formula.

8. SUMMARY

The following results have been discussed in this article.
i. The appropriate scoring of data giving the simultaneous segre-

gation of three factors and the method of arriving at the best estimates
of recombination fractions from data relating to various sources and
types of crosses have been discussed in the two cases (i) when they
are taken as free parameters and (ii) when they conform to Kosambi's
formula. It has been observed that the scores and information matrix
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in the latter case are connected with those in the former by simple
relations and in any practical example it is convenient to score the
data considering the recombina Lion fractions as free parameters and
then deduce the total scores appropriate to the latter case.

It has been found, in the examples discussed in the article, that
the estimates found by using Kosambi's formula have considerably
smaller variances. This is so, for when this formula is true there
are only two parameters to be estimated (the third one being deduced
from the formula) and any method of estimation which does not
make use of the formula, being different from the maximum likelihood
method appropriate to the two parameters, is bound to be inefficient.

The use of such empirical relations as the one considered above
among the parameters to be estimated, when known, enhances the
precision of the estimates although they may not be strictly accurate.
The assumption of a slightly inaccurate relationship may introduce
bias in the estimates but such estimates are more useful than the
less efficient estimates so long as the bias, in any case, is small in
comparison with its standard error. This, in some way, is secured
when the test for a hypothesis specifying some restrictions indicates
close agreement with the observations. Kosambi's formula is very
useful from this point of view, as its use considerably enhances the
precision of the estimates. A test has been proposed to judge the
validity of this formula in any particular case.

2. In view of the slightly heavier computation involved in the
method of efficient scores an investigation has been made to find out
the loss in efficiency due to the simpler method of scoring by
considering the data as classified with respect to only two factors
each time and considering them as independent distributions. The
latter method is called the individual segment method.

It has been found that if the data consist of only back crosses
both the methods lead to identical estimates, when the recombination
fractions are considered as free parameters. This, however, is not true
when the estimates are found subject to Kosambi's formula but the ioss
in efficiency is not expected to be considerable.

In the case of intercrosses a particular example has been chosen
to find the relative efficiency of this method in the two cases when
the recombination fractions are considered as (i) free parameters and
(ii) subject to Kosambi's formula. It is found that the loss of
information due to the simpler analysis is negligible when the
recombination fractions conform to Kosambi's formula. This may
not be generally true, but the loss in any case is not expected to be
considerable. Similar results may be expected in the case of data
giving the simultaneous segregation of more than three factors. Their
exact treatment involves some complications because some extraneous
parameters have to be estimated and accounted for in the evaluation
of the variances of the estimates of the recombination fractions. This,
however, awaits further study.
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Finally, I should like to thank Professor R. A. Fisher for his
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