Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders

Abstract

Adeno-associated virus (AAV) gene therapy constitutes a powerful tool for the treatment of neurodegenerative diseases. While AAVs are generally administered systemically to newborns in preclinical studies of neurological disorders, in adults the maturity of the blood–brain barrier (BBB) must be considered when selecting the route of administration. Delivery of AAVs into the cerebrospinal fluid (CSF) represents an attractive approach to target the central nervous system (CNS) and bypass the BBB. In this study, we investigated the efficacy of intra-CSF delivery of a single-stranded (ss) AAV9-CAG-GFP vector in adult mice via intracisternal (iCist) or intralumbar (it-Lumb) administration. It-Lumb ssAAV9 delivery resulted in greater diffusion throughout the entire spinal cord and green fluorescent protein (GFP) expression mainly in the cerebellum, cortex and olfactory bulb. By contrast, iCist delivery led to strong GFP expression throughout the entire brain. Comparison of the transduction efficiency of ssAAV9-CAG-GFP versus ssAAV9-SYN1-GFP following it-Lumb administration revealed widespread and specific GFP expression in neurons and motoneurons of the spinal cord and brain when the neuron-specific synapsin 1 (SYN1) promoter was used. Our findings demonstrate that it-Lumb ssAAV9 delivery is a safe and highly efficient means of targeting the CNS in adult mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Querfurth HW, Laferla FM . Alzheimer’s disease. N Engl J Med 2010; 362: 329–344.

    Article  CAS  Google Scholar 

  2. Kalia LV, Lang AE . Parkinson’s disease. Lancet 2015; 386: 896–912.

    Article  CAS  Google Scholar 

  3. Renton AE, Chiò A, Traynor BJ . State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014; 17: 17–23.

    Article  CAS  Google Scholar 

  4. Faravelli I, Nizzardo M, Comi GP, Corti S . Spinal muscular atrophy—recent therapeutic advances for an old challenge. Nat Rev Neurol 2015; 11: 351–359.

    Article  CAS  Google Scholar 

  5. Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N . Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther 2016; 27: 478–496.

    Article  CAS  Google Scholar 

  6. Li J, Daly TM . Adeno-associated virus-mediated gene transfer to the neonatal brain. Methods 2002; 28: 203–207.

    Article  CAS  Google Scholar 

  7. Taymans J-M, Vandenberghe LH, Van Den Haute C, Thiry I, Deroose CM, Mortelmans L et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 2007; 18: 195–206.

    Article  CAS  Google Scholar 

  8. Ciron C, Cressant A, Raoul S, Cherel Y, Hantraye P, De N . Human a—iduronidase gene transfer mediated of nonhuman primates : vector diffusion and biodistribution. Hum Gene Ther 2009; 360: 350–360.

    Article  Google Scholar 

  9. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  Google Scholar 

  10. Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L et al. Original article systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 2009; 19: 1971–1980.

    Article  Google Scholar 

  11. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC et al. Adenovirus-associated virus vector–mediated gene transfer in Hemophilia B. N Engl J Med 2011; 365: 2357–2365.

  12. Snyder BR, Gray SJ, Quach ET, Huang JW, Leung CH, Samulski RJ et al. Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 2011; 1135: 1129–1135.

    Article  Google Scholar 

  13. Samaranch L, Kells AP, Salegio EA, Sebastian WS, Bringas JR, Forsayeth J et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 2013; 532: 526–532.

    Article  Google Scholar 

  14. Bucher T, Dubreil L, Colle M, Maquigneau M, Deniaud J, Ledevin M et al. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats. Gene Therapy 2014; 21: 522–528.

    Article  CAS  Google Scholar 

  15. Guo Y, Wang D, Qiao T, Yang C . A single injection of recombinant adeno-associated virus into the lumbar cistern delivers transgene expression throughout the whole spinal cord. Mol Neurobiol 2015; 53: 3235–3248.

    Article  Google Scholar 

  16. Hordeaux J, Dubreil L, Deniaud J, Iacobelli F, Moreau S, Ledevin M et al. Efficient central nervous system AAVrh10-mediated intrathecal gene transfer in adult and neonate rats. Gene Therapy 2015; 22: 316–324.

    Article  CAS  Google Scholar 

  17. Vance MA, Mitchell A, Samulski RJ. AAV bology, infectivity and therapeutic use from bench to clinic gene therapy - principles and challenges. Chapter 5, InTech, 2015, pp 119–143.

  18. Jackson KL, Dayton RD, Klein RL . AAV9 supports wide-scale transduction of the CNS and TDP-43 disease modeling in adult rats. Mol Ther Methods Clin Dev 2015; 2: 15036.

    Article  Google Scholar 

  19. Tanguy Y, Biferi MG, Besse A, Astord S, Cohen-Tannoudji M, Marais T et al. Systemic AAVrh10 provides higher transgene expression than AAV9 in the brain and the spinal cord of neonatal mice. Front Mol Neurosci 2015; 8: 36.

    Article  Google Scholar 

  20. Kilic E, Ba M . Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Therapy 2003; 10: 337–347.

    Article  Google Scholar 

  21. Mclean JR, Smith GA, Rocha EM, Hayes MA, Beagan JA, Hallett PJ et al. Widespread neuron-specific transgene expression in brain and spinal cord following synapsin promoter-driven AAV9 neonatal intracerebroventricular injection. Neurosci Lett 2014; 576: 73–78.

    Article  CAS  Google Scholar 

  22. McCarty DM . Self-complementary AAV vectors; advances and applications. Mol Ther 2008; 16: 1648–1656.

    Article  CAS  Google Scholar 

  23. Dong B, Nakai H, Xiao W . Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 2010; 18: 87–92.

    Article  CAS  Google Scholar 

  24. Wang Y, Ling C, Song L, Wang L, Aslanidi GV, Tan M et al. Limitations of encapsidation of recombinant self-complementary adeno-associated viral genomes in different serotype capsids and their quantitation. Hum Gene Ther Methods 2012; 23: 225–233.

    Article  CAS  Google Scholar 

  25. Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Belur LR, McIvor RS et al. Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat 2014; 8: 42.

    PubMed  PubMed Central  Google Scholar 

  26. Lukashchuk V, Lewis KE, Coldicott I, Grierson AJ, Azzouz M . AAV9-mediated central nervous system—targeted gene delivery via cisterna magna route in mice. Mol Ther Methods Clin Dev 2014; 3: 15055.

    Article  Google Scholar 

  27. Samaranch L, Bringas J, Pivirotto P, Sebastian WS, Forsayeth J, Bankiewicz K . Cerebellomedullary cistern delivery for AAV-based gene therapy: a technical note for nonhuman primates. Hum Gene Ther Methods 2016; 27: 13–16.

    Article  CAS  Google Scholar 

  28. Gray SJ, Kalburgi SN, Mccown TJ, Samulski RJ . Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Therapy 2013; 20: 450–459.

    Article  CAS  Google Scholar 

  29. Dirren E, Aebischer J, Rochat C, Towne C, Schneider BL . SOD1 silencing in motoneurons or glia rescues neuromuscular function in ALS mice. Ann Clin Transl Neurol 2015; 2: 167–184.

    Article  CAS  Google Scholar 

  30. Passini MA, Bu J, Richards AM, Treleaven CM, Sullivan JA, O’Riordan CR et al. Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy. Hum Gene Ther 2014; 12: 1–12.

    Google Scholar 

  31. Ayers JI, Fromholt S, Sinyavskaya O, Siemienski Z, Rosario AM, Li A et al. Widespread and efficient transduction of spinal cord and brain following neonatal AAV injection and potential disease modifying effect in ALS mice. Mol Ther 2015; 23: 53–62.

    Article  CAS  Google Scholar 

  32. Hinderer C, Bell P, Vite CH, Louboutin J-P, Grant R, Bote E et al. Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna. Mol Ther Methods Clin Dev 2014; 1: 14051.

    Article  Google Scholar 

  33. Meyer K, Ferraiuolo L, Schmelzer L, Braun L, Mcgovern V, Likhite S et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA : A Dose–response Study in Mice and nonhuman primates 2015; 23: 477–487.

    CAS  Google Scholar 

  34. Timothy R Deer, Jason E Pope. Factors to consider in the choice of intrathecal drug in the treatment of neuropathic pain. Expert Review of Clinical Pharmacology 2015; 8: 507–510.

  35. Shah R, Baqai-stern A, Gulati A . Managing intrathecal drug delivery (ITDD) in cancer patients. Curr Pain Headache Rep 2015; 19: 20.

    Article  Google Scholar 

  36. Samaranch L, San Sebastian W, Kells AP, Salegio EA, Heller G, Bringas JR et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther 2014; 22: 329–337.

    Article  CAS  Google Scholar 

  37. Sakka L, Coll G, Chazal J . Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis 2011; 128: 309–316.

    Article  CAS  Google Scholar 

  38. Lim J-A, Li L, Raben N . Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 2014; 6: 177.

    Article  Google Scholar 

  39. Shababi M, Lorson CL, Rudnik-Schöneborn SS . Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease? J Anat 2014; 224: 15–28.

    Article  CAS  Google Scholar 

  40. Lee N, Muramatsu S, Chien Y, Liu W, Wang W, Cheng C et al. Benefits of neuronal preferential systemic gene therapy for neurotransmitter deficiency. Mol Ther 2015; 23: 1572–1581.

    Article  CAS  Google Scholar 

  41. Bustos R, Kolen ER, Braiterman L, Baines AJ, Gorelick FS, Hubbard AL . Synapsin I is expressed in epithelial cells : localization to a unique trans-Golgi compartment. J Cell Sci 2001; 114: 3695–3704.

    CAS  PubMed  Google Scholar 

  42. Towne C, Pertin M, Beggah AT, Aebischer P, Decosterd I . Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery. Mol Pain 2009; 5: 52.

    Article  Google Scholar 

  43. Radford RA, Morsch M, Rayner SL, Cole NJ, Pountney DL, Chung RS . The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia. Front Cell Neurosci 2015; 9: 414.

    Article  Google Scholar 

  44. Zerah M, Piguet F, Colle M-A, Raoul S, Deschamps J-Y, Deniaud J et al. Intracerebral gene therapy using AAVrh.10-hARSA recombinant vector to treat patients with early-onset forms of metachromatic leukodystrophy: preclinical feasibility and safety assessments in nonhuman primates. Hum Gene Ther Clin Dev 2015; 26: 113–124.

    Article  CAS  Google Scholar 

  45. Karumuthil-melethil S, Marshall MS, Heindel C, Jakubauskas B, Bongarzone ER, Gray SJ . Intrathecal administration of AAV/GALC vectors in 10–11-day-old twitcher mice improves survival and is enhanced by bone marrow transplant. J Neurosci Res 2016; 1151: 1138–1151.

    Article  Google Scholar 

  46. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Investissement d'Avenir (ANR-11-INBS-0011—NeurATRIS: A Translational Research Infrastructure for Biotherapies in Neurosciences); the Association Française contre les Myopathies (AFM); and the Région Pays de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-A Colle.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bey, K., Ciron, C., Dubreil, L. et al. Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders. Gene Ther 24, 325–332 (2017). https://doi.org/10.1038/gt.2017.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2017.18

This article is cited by

Search

Quick links