Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence for the in vivo safety of insulated foamy viral vectors

Abstract

Retroviral vector-mediated stem cell gene therapy is a promising approach for the treatment of hematopoietic disorders. However, genotoxic side effects from integrated vector proviruses are a significant concern for the use of retroviral vectors in the clinic. Insulated foamy viral (FV) vectors are potentially safer retroviral vectors for hematopoietic stem cell gene therapy. We evaluated two newly identified human insulators, A1 and A2, for use in FV vectors. These insulators had moderate insulating capacity and higher titers than previously developed insulated FV vectors. The A1-insulated FV vector was chosen for comparison with the previously described 650cHS4-insulated FV vector in human cord blood CD34+ repopulating cells in an immunodeficient mouse model. To maximize the effects of the insulators on the safety of FV vectors, FV vectors containing a highly genotoxic spleen focus forming virus promoter were used to elicit differences in genotoxicity. In vivo, the A1-insulated FV vector showed an approximate 50% reduction in clonal dominance compared with either the 650cHS4-insulated or control FV vectors, although the transduction efficiency of the A1-insulated vector was higher. This data suggests that the A1-insulated FV vector is promising for future preclinical and clinical studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Touzot F, Moshous D, Creidy R, Neven B, Frange P, Cros G et al. Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1. Blood 2015; 125: 3563–3569.

    Article  CAS  Google Scholar 

  2. Kiem HP, Sellers S, Thomasson B, Morris JC, Tisdale JF, Horn PA et al. Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol Ther 2004; 9: 389–395.

    Article  CAS  Google Scholar 

  3. Carbonaro DA, Zhang L, Jin X, Montiel-Equihua C, Geiger S, Carmo M et al. Preclinical demonstration of lentiviral vector-mediated correction of immunological and metabolic abnormalities in models of adenosine deaminase deficiency. Mol Ther 2014; 22: 607–622.

    Article  CAS  Google Scholar 

  4. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science 1995; 270: 470–475.

    Article  CAS  Google Scholar 

  5. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185–1193.

    Article  CAS  Google Scholar 

  6. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010; 467: 318–322.

    Article  CAS  Google Scholar 

  7. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013; 341: 1233151.

    Article  Google Scholar 

  8. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.

    Article  CAS  Google Scholar 

  9. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16: 198–204.

    Article  CAS  Google Scholar 

  10. Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M et al. Gene therapy for Wiskott-Aldrich syndrome—long-term efficacy and genotoxicity. Sci Transl Med 2014; 6: 227–233.

    Article  Google Scholar 

  11. Trobridge GD . Genotoxicity of retroviral hematopoietic stem cell gene therapy. Expert Opin Biol Ther 2011; 11: 581–593.

    Article  CAS  Google Scholar 

  12. Hargrove PW, Kepes S, Hanawa H, Obenauer JC, Pei D, Cheng C et al. Globin lentiviral vector insertions can perturb the expression of endogenous genes in beta-thalassemic hematopoietic cells. Mol Ther 2008; 16: 525–533.

    Article  CAS  Google Scholar 

  13. Cesana D, Ranzani M, Volpin M, Bartholomae C, Duros C, Artus A et al. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Mol Ther 2014; 22: 774–785.

    Article  CAS  Google Scholar 

  14. Arumugam PI, Higashimoto T, Urbinati F, Modlich U, Nestheide S, Xia P et al. Genotoxic potential of lineage-specific lentivirus vectors carrying the beta-globin locus control region. Mol Ther 2009; 17: 1929–1937.

    Article  CAS  Google Scholar 

  15. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  Google Scholar 

  16. Siler U, Paruzynski A, Holtgreve-Grez H, Kuzmenko E, Koehl U, Renner ED et al. Successful combination of sequential gene therapy and rescue allo-HSCT in two children with X-CGD - importance of timing. Curr Gene Ther 2015; 15: 416–427.

    Article  CAS  Google Scholar 

  17. Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R et al. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci USA 2006; 103: 1498–1503.

    Article  CAS  Google Scholar 

  18. Olszko ME, Adair JE, Linde I, Rae DT, Trobridge P, Hocum JD et al. Foamy viral vector integration sites in SCID-repopulating cells after MGMTP140K-mediated in vivo selection. Gene Therapy 2015; 22: 591–595.

    Article  CAS  Google Scholar 

  19. Browning DL, Collins CP, Hocum JD, Leap D, Rae DT, Trobridge GD . Insulated Foamy Viral Vectors. Hum Gene Ther 2016; 27: 255–266.

    Article  CAS  Google Scholar 

  20. Everson EM, Olzsko ME, Leap DJ, Hocum JD, Trobridge GD . A direct comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance. Mol Ther Methods Clin Dev 2016; 3: 16048.

    Article  Google Scholar 

  21. Trobridge G . Improved foamy virus vectors with minimal viral sequences. Mol Ther 2002; 6: 321–328.

    Article  CAS  Google Scholar 

  22. Bokhoven M, Stephen SL, Knight S, Gevers EF, Robinson IC, Takeuchi Y et al. Insertional gene activation by lentiviral and gammaretroviral vectors. J Virol 2009; 83: 283–294.

    Article  CAS  Google Scholar 

  23. Nowrouzi A, Dittrich M, Klanke C, Heinkelein M, Rammling M, Dandekar T et al. Genome-wide mapping of foamy virus vector integrations into a human cell line. J Gen Virol 2006; 87: 1339–1347.

    Article  CAS  Google Scholar 

  24. Nasimuzzaman M, Kim YS, Wang YD, Persons DA . High-titer foamy virus vector transduction and integration sites of human CD34(+) cell-derived SCID-repopulating cells. Mol Ther Methods Clin Dev 2014; 1: 14020.

    Article  Google Scholar 

  25. Hendrie PC, Huo Y, Stolitenko RB, Russell DW . A rapid and quantitative assay for measuring neighboring gene activation by vector proviruses. Mol Ther 2008; 16: 534–540.

    Article  CAS  Google Scholar 

  26. Josephson NC, Trobridge G, Russell DW . Transduction of long-term and mobilized peripheral blood-derived NOD/SCID repopulating cells by foamy virus vectors. Hum Gene Ther 2004; 15: 87–92.

    Article  CAS  Google Scholar 

  27. Trobridge GD, Allen J, Peterson L, Ironside C, Russell DW, Kiem HP . Foamy and lentiviral vectors transduce canine long-term repopulating cells at similar efficiency. Hum Gene Ther 2009; 20: 519–523.

    Article  CAS  Google Scholar 

  28. Miccio A, Poletti V, Tiboni F, Rossi C, Antonelli A, Mavilio F et al. The GATA1-HS2 enhancer allows persistent and position-independent expression of a beta-globin transgene. PloS One 2011; 6: e27955.

    Article  CAS  Google Scholar 

  29. Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the β(A(T87Q))-globin gene. Hum Gene Ther 2016; 27: 148–165.

    Article  CAS  Google Scholar 

  30. Bauer TR Jr., Allen JM, Hai M, Tuschong LM, Khan IF, Olson EM et al. Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat Med 2008; 14: 93–97.

    Article  CAS  Google Scholar 

  31. Bauer TR Jr., Olson EM, Huo Y, Tuschong LM, Allen JM, Li Y et al. Treatment of canine leukocyte adhesion deficiency by foamy virus vectors expressing CD18 from a PGK promoter. Gene Therapy 2011; 18: 553–559.

    Article  CAS  Google Scholar 

  32. Hunter MJ, Zhao H, Tuschong LM, Bauer TR Jr., Burkholder TH, Persons DA et al. Gene therapy for canine leukocyte adhesion deficiency with lentiviral vectors using the murine stem cell virus and human phosphoglycerate kinase promoters. Hum Gene Ther 2011; 22: 689–696.

    Article  CAS  Google Scholar 

  33. Booth C, Gaspar HB, Thrasher AJ . Treating immunodeficiency through HSC Gene therapy. Trends Mol Med 2016; 22: 317–327.

    Article  CAS  Google Scholar 

  34. Li CL, Xiong D, Stamatoyannopoulos G, Emery DW . Genomic and functional assays demonstrate reduced gammaretroviral vector genotoxicity associated with use of the cHS4 chromatin insulator. Mol Ther 2009; 17: 716–724.

    Article  CAS  Google Scholar 

  35. Ramezani A, Hawley TS, Hawley RG . Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator. Blood 2003; 101: 4717–4724.

    Article  CAS  Google Scholar 

  36. Felsenfeld G . Chromatin structure and the expression of globin-encoding genes. Gene 1993; 135: 119–124.

    Article  CAS  Google Scholar 

  37. Chung JH, Whiteley M, Felsenfeld G . A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 1993; 74: 505–514.

    Article  CAS  Google Scholar 

  38. Bell AC, West AG, Felsenfeld G . Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 2001; 291: 447–450.

    Article  CAS  Google Scholar 

  39. Burgess-Beusse B, Farrell C, Gaszner M, Litt M, Mutskov V, Recillas-Targa F et al. The insulation of genes from external enhancers and silencing chromatin. Proc Natl Acad Sci USA 2002; 99: 16433–16437.

    Article  CAS  Google Scholar 

  40. West AG, Gaszner M, Felsenfeld G . Insulators: many functions, many mechanisms. Genes Dev 2002; 16: 271–288.

    Article  Google Scholar 

  41. Wallace JA, Felsenfeld G . We gather together: insulators and genome organization. Curr Opin Genet Dev 2007; 17: 400–407.

    Article  CAS  Google Scholar 

  42. Sun FL, Elgin SC . Putting boundaries on silence. Cell 1999; 99: 459–462.

    Article  CAS  Google Scholar 

  43. Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F et al. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 2006; 20: 2349–2354.

    Article  CAS  Google Scholar 

  44. Emery DW . The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors. Hum Gene Ther 2011; 22: 761–774.

    Article  CAS  Google Scholar 

  45. Neff T, Shotkoski F, Stamatoyannopoulos G . Stem cell gene therapy, position effects and chromatin insulators. Stem Cells 1997; 15: 265–271.

    Article  CAS  Google Scholar 

  46. Arumugam PI, Urbinati F, Velu CS, Higashimoto T, Grimes HL, Malik P . The 3′ region of the chicken hypersensitive site-4 insulator has properties similar to its core and is required for full insulator activity. PloS One 2009; 4: e6995.

    Article  Google Scholar 

  47. Gaussin A, Modlich U, Bauche C, Niederlander NJ, Schambach A, Duros C et al. CTF/NF1 transcription factors act as potent genetic insulators for integrating gene transfer vectors. Gene Therapy 2012; 19: 15–24.

    Article  CAS  Google Scholar 

  48. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009; 119: 964–975.

    Article  CAS  Google Scholar 

  49. Zychlinski D, Schambach A, Modlich U, Maetzig T, Meyer J, Grassman E et al. Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 2008; 16: 718–725.

    Article  CAS  Google Scholar 

  50. Liu M, Maurano MT, Wang H, Qi H, Song CZ, Navas PA et al. Genomic discovery of potent chromatin insulators for human gene therapy. Nat Biotechnol 2015; 33: 198–203.

    Article  Google Scholar 

  51. Chen H, Tian Y, Shu W, Bo X, Wang S . Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PloS One 2012; 7: e41374.

    Article  CAS  Google Scholar 

  52. Follows GA, Ferreira R, Janes ME, Spensberger D, Cambuli F, Chaney AF et al. Mapping and functional characterisation of a CTCF-dependent insulator element at the 3' border of the murine Scl transcriptional domain. PloS one 2012; 7: e31484.

    Article  CAS  Google Scholar 

  53. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 2007; 128: 1231–1245.

    Article  CAS  Google Scholar 

  54. Xie X, Mikkelsen TS, Gnirke A, Lindblad-Toh K, Kellis M, Lander ES . Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc Natl Acad Sci USA 2007; 104: 7145–7150.

    Article  CAS  Google Scholar 

  55. Weber EL, Cannon PM . Promoter choice for retroviral vectors: transcriptional strength versus trans-activation potential. Hum Gene Ther 2007; 18: 849–860.

    Article  CAS  Google Scholar 

  56. Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A, Cassani B et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 2007; 110: 1770–1778.

    Article  CAS  Google Scholar 

  57. Zhou S, Bonner MA, Wang YD, Rapp S, De Ravin SS, Malech HL et al. Quantitative shearing linear amplification polymerase chain reaction: an improved method for quantifying lentiviral vector insertion sites in transplanted hematopoietic cell systems. Hum Gene Ther Methods 2015; 26: 4–12.

    Article  CAS  Google Scholar 

  58. Rae DT, Collins CP, Hocum JD, Browning DL, Trobridge GD . Modified genomic sequencing PCR using the MiSeq platform to identify retroviral integration sites. Hum Gene Ther Methods 2015; 26: 221–227.

    Article  CAS  Google Scholar 

  59. Corrigan-Curay J, Cohen-Haguenauer O, O'Reilly M, Ross SR, Fan H, Rosenberg N et al. Challenges in vector and trial design using retroviral vectors for long-term gene correction in hematopoietic stem cell gene therapy. Mol Ther 2012; 20: 1084–1094.

    Article  CAS  Google Scholar 

  60. Liu M, Li CL, Stamatoyannopoulos G, Dorschner MO, Humbert R, Stamatoyannopoulos JA et al. Gammaretroviral vector integration occurs overwhelmingly within and near DNase hypersensitive sites. Hum Gene Ther 2012; 23: 231–237.

    Article  CAS  Google Scholar 

  61. Tobaly-Tapiero J, Bittoun P, Lehmann-Che J, Delelis O, Giron ML, de The H et al. Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic (Copenhagen, Denmark) 2008; 9: 1717–1727.

    Article  CAS  Google Scholar 

  62. Dabney J, Meyer M . Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques 2012; 52: 87–94.

    Article  CAS  Google Scholar 

  63. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012; 150: 165–178.

    Article  CAS  Google Scholar 

  64. Ramezani A, Hawley TS, Hawley RG . Combinatorial incorporation of enhancer-blocking components of the chicken beta-globin 5'HS4 and human T-cell receptor alpha/delta BEAD-1 insulators in self-inactivating retroviral vectors reduces their genotoxic potential. Stem Cells 2008; 26: 3257–3266.

    Article  CAS  Google Scholar 

  65. Montini E, Cesana D . Genotoxicity assay for gene therapy vectors in tumor prone Cdkn2a(-)/(-) mice. Methods Enzymol 2012; 507: 171–185.

    Article  CAS  Google Scholar 

  66. Kiem HP, Wu RA, Sun G, von Laer D, Rossi JJ, Trobridge GD . Foamy combinatorial anti-HIV vectors with MGMTP140K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo. Gene Therapy 2010; 17: 37–49.

    Article  CAS  Google Scholar 

  67. Cheung AM, Nguyen LV, Carles A, Beer P, Miller PH, Knapp DJ et al. Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice. Blood 2013; 122: 3129–3137.

    Article  CAS  Google Scholar 

  68. Beard BC, Adair JE, Trobridge GD, Kiem HP . High-throughput genomic mapping of vector integration sites in gene therapy studies. Methods Mol Biol 2014; 1185: 321–344.

    Article  Google Scholar 

  69. Zhang J, Kobert K, Flouri T, Stamatakis A . PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014; 30: 614–620.

    Article  CAS  Google Scholar 

  70. Hocum JD, Battrell LR, Maynard R, Adair JE, Beard BC, Rawlings DJ et al. VISA - Vector Integration Site Analysis server: a web-based server to rapidly identify retroviral integration sites from next-generation sequencing. BMC Bioinformatics 2015; 16: 212.

    Article  Google Scholar 

  71. Brugman MH, Suerth JD, Rothe M, Suerbaum S, Schambach A, Modlich U et al. Evaluating a ligation-mediated PCR and pyrosequencing method for the detection of clonal contribution in polyclonal retrovirally transduced samples. Hum Gene Ther Methods 2013; 24: 68–79.

    Article  CAS  Google Scholar 

  72. Gabriel R, Kutschera I, Bartholomae CC, von Kalle C, Schmidt M . Linear amplification mediated PCR—localization of genetic elements and characterization of unknown flanking DNA. J Vis Exp 2014: e51543.

  73. Lu R, Neff NF, Quake SR, Weissman IL . Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol 2011; 29: 928–933.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants AI097100 and AI102672 (GDT). We acknowledge the WSU Spokane flow cytometry core.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G D Trobridge.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Browning, D., Everson, E., Leap, D. et al. Evidence for the in vivo safety of insulated foamy viral vectors. Gene Ther 24, 187–198 (2017). https://doi.org/10.1038/gt.2016.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.88

This article is cited by

Search

Quick links