Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Opposing effects of Sca-1+ cell-based systemic FGF2 gene transfer strategy on lumbar versus caudal vertebrae in the mouse

Abstract

Our previous work showed that a Sca-1+ cell-based FGF2 therapy was capable of promoting robust increases in trabecular bone formation and connectivity on the endosteum of long bones. Past work reported that administration of FGF2 protein promoted bone formation in red marrow but not in yellow marrow. The issue as to whether the Sca-1+ cell-based FGF2 therapy is effective in yellow marrow is highly relevant to its clinical potential for osteoporosis, as most red marrows in a person of an advanced age are converted to yellow marrows. Accordingly, this study sought to compare the osteogenic effects of this stem cell-based FGF2 therapy on red marrow-filled lumbar vertebrae with those on yellow marrow-filled caudal vertebrae of young adult W41/W41 mice. The Sca-1+ cell-based FGF2 therapy drastically increased trabecular bone formation in lumbar vertebrae, but the therapy not only did not promote bone formation but instead caused substantial loss of trabecular bone in caudal vertebrae. The lack of an osteogenic response was not due to insufficient engraftment of FGF2-expressing Sca-1+ cells or inadequate FGF2 expression in caudal vertebrae. Previous studies have demonstrated that recipient mice of this stem cell-based FGF2 therapy developed secondary hyperparathyroidism and increased bone resorption. Thus, the loss of bone mass in caudal vertebrae might in part be due to an increase in resorption without a corresponding increase in bone formation. In conclusion, the Sca-1+ cell-based FGF2 therapy is osteogenic in red marrow but not in yellow marrow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kalpakcioglu BB, Morshed S, Engelke K, Genant HK . Advanced imaging of bone macrostructure and microstructure in bone fragility and fracture repair. J Bone Joint Surg Am 2008; 90 (Suppl 1): 68–78.

    Article  PubMed  Google Scholar 

  2. Iwamoto J, Takeda T, Sato Y . Efficacy and safety of alendronate and risedronate for postmenopausal osteoporosis. Curr Med Res Opin 2006; 22: 919–928.

    Article  CAS  PubMed  Google Scholar 

  3. Spangrude GJ, Brooks DM, Tumas DB . Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 1995; 85: 1006–1016.

    CAS  PubMed  Google Scholar 

  4. Hall SL, Lau KH, Chen ST, Felt JC, Gridley DS, Yee JK et al. An improved mouse Sca-1+ cell-based bone marrow transplantation model for use in gene- and cell-based therapeutic studies. Acta Haematol 2007; 117: 24–33.

    Article  PubMed  Google Scholar 

  5. Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 2000; 105: 1085–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hurley MM, Okada Y, Xiao L, Tanaka Y, Ito M, Okimoto N et al. Impaired bone anabolic response to parathyroid hormone in Fgf2-/- and Fgf2+/- mice. Biochem Biophys Res Commun 2006; 341: 989–994.

    Article  CAS  PubMed  Google Scholar 

  7. Mayahara H, Ito T, Nagai H, Miyajima H, Tsukuda R, Taketomi S et al. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 1993; 9: 73–80.

    Article  CAS  PubMed  Google Scholar 

  8. Liang H, Pun S, Wronski TJ . Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. Endocrinology 1999; 140: 5780–5788.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura K, Kurokawa T, Kawaguchi H, Kato T, Hanada K, Hiyama Y et al. Stimulation of endosteal bone formation by local intraosseous application of basic fibroblast growth factor in rats. Rev Rhum Engl Ed 1997; 64: 101–105.

    CAS  PubMed  Google Scholar 

  10. Nakamura K, Kurokawa T, Aoyama I, Hanada K, Tamura M, Kawaguchi H . Stimulation of bone formation by intraosseous injection of basic fibroblast growth factor in ovariectomised rats. Int Orthop 1998; 22: 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wronski TJ, Ratkus AM, Thomsen JS, Vulcan Q, Mosekilde L . Sequential treatment with basic fibroblast growth factor and parathyroid hormone restores lost cancellous bone mass and strength in the proximal tibia of aged ovariectomized rats. J Bone Miner Res 2001; 16: 1399–1407.

    Article  CAS  PubMed  Google Scholar 

  12. Lane NE, Kumer J, Yao W, Breunig T, Wronski T, Modin G et al. Basic fibroblast growth factor forms new trabeculae that physically connect with pre-existing trabeculae, and this new bone is maintained with an anti-resorptive agent and enhanced with an anabolic agent in an osteopenic rat model. Osteoporos Int 2003; 14: 374–382.

    Article  CAS  PubMed  Google Scholar 

  13. Yao W, Hadi T, Jiang Y, Lotz J, Wronski TJ, Lane NE . Basic fibroblast growth factor improves trabecular bone connectivity and bone strength in the lumbar vertebral body of osteopenic rats. Osteoporos Int 2005; 16: 1939–1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwaniec UT, Magee KA, Mitova-Caneva NG, Wronski TJ . Bone anabolic effects of subcutaneous treatment with basic fibroblast growth factor alone and in combination with estrogen in osteopenic ovariectomized rats. Bone 2003; 33: 380–386.

    Article  CAS  PubMed  Google Scholar 

  15. Power RA, Iwaniec UT, Wronski TJ . Changes in gene expression associated with the bone anabolic effects of basic fibroblast growth factor in aged ovariectomized rats. Bone 2002; 31: 143–148.

    Article  CAS  PubMed  Google Scholar 

  16. Fei Y, Xiao L, Hurley MM . The impaired bone anabolic effect of PTH in the absence of endogenous FGF2 is partially due to reduced ATF4 expression. Biochem Biophys Res Commun 2011; 412: 160–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hall SL, Lau KH, Chen ST, Wergedal JE, Srivastava A, Klamut H et al. Sca-1(+) hematopoietic cell-based gene therapy with a modified FGF-2 increased endosteal/trabecular bone formation in mice. Mol Ther 2007; 15: 1881–1889.

    Article  CAS  PubMed  Google Scholar 

  18. Meng X, Baylink DJ, Sheng M, Wang H, Gridley DS, Lau KH et al. Erythroid promoter confines FGF2 expression to the marrow after hematopoietic stem cell gene therapy and leads to enhanced endosteal bone formation. PLoS One 2012; 7: e37569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall SL, Chen ST, Gysin R, Gridley DS, Mohan S, Lau KH . Stem cell antigen-1+ cell-based bone morphogenetic protein-4 gene transfer strategy in mice failed to promote endosteal bone formation. J Gene Med 2009; 11: 877–888.

    Article  CAS  PubMed  Google Scholar 

  20. Hall SL, Chen ST, Wergedal JE, Gridley DS, Mohan S, Lau KH . Stem cell antigen-1 positive cell-based systemic human growth hormone gene transfer strategy increases endosteal bone resorption and bone loss in mice. J Gene Med 2011; 13: 77–88.

    Article  CAS  PubMed  Google Scholar 

  21. Pun S, Florio CL, Wronski TJ . Anabolic effects of basic fibroblast growth factor in the tibial diaphysis of ovariectomized rats. Bone 2000; 27: 197–202.

    Article  CAS  PubMed  Google Scholar 

  22. Lane NE, Yao W, Kinney JH, Modin G, Balooch M, Wronski TJ . Both hPTH(1-34) and bFGF increase trabecular bone mass in osteopenic rats but they have different effects on trabecular bone architecture. J Bone Miner Res 2003; 18: 2105–2115.

    Article  CAS  PubMed  Google Scholar 

  23. Nagai H, Tsukuda R, Mayahara H . Effects of basic fibroblast growth factor (bFGF) on bone formation in growing rats. Bone 1995; 16: 367–373.

    Article  CAS  PubMed  Google Scholar 

  24. Aguirre JI, Leal ME, Rivera MF, Vanegas SM, Jorgensen M, Wronski TJ . Effects of basic fibroblast growth factor and a prostaglandin E2 receptor subtype 4 agonist on osteoblastogenesis and adipogenesis in aged ovariectomized rats. J Bone Miner Res 2007; 22: 877–888.

    Article  CAS  PubMed  Google Scholar 

  25. Pun S, Dearden RL, Ratkus AM, Liang H, Wronski TJ . Decreased bone anabolic effect of basic fibroblast growth factor at fatty marrow sites in ovariectomized rats. Bone 2001; 28: 220–226.

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka Y, Inoue T . Fatty marrow in the vertebrae. A parameter for hematopoietic activity in the aged. J Gerontol 1976; 31: 527–532.

    Article  CAS  PubMed  Google Scholar 

  27. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao L, Sobue T, Esliger A, Kronenberg MS, Coffin JD, Doetschman T et al. Disruption of the Fgf2 gene activates the adipogenic and suppresses the osteogenic program in mesenchymal marrow stromal stem cells. Bone 2010; 47: 360–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R . Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 1997; 138: 4456–4462.

    Article  CAS  PubMed  Google Scholar 

  30. Pitaru S, Kotev-Emeth S, Noff D, Kaffuler S, Savion N . Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture. J Bone Miner Res 1993; 8: 919–929.

    Article  CAS  PubMed  Google Scholar 

  31. Fei Y, Xiao L, Doetschman T, Coffin DJ, Hurley MM . Fibroblast growth factor 2 stimulation of osteoblast differentiation and bone formation is mediated by modulation of the Wnt signaling pathway. J Biol Chem 2011; 286: 40575–40583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hurley MM, Lee SK, Raisz LG, Bernecker P, Lorenzo J . Basic fibroblast growth factor induces osteoclast formation in murine bone marrow cultures. Bone 1998; 22: 309–316.

    Article  CAS  PubMed  Google Scholar 

  33. Okada Y, Montero A, Zhang X, Sobue T, Lorenzo J, Doetschman T et al. Impaired osteoclast formation in bone marrow cultures of Fgf2 null mice in response to parathyroid hormone. J Biol Chem 2003; 278: 21258–21266.

    Article  CAS  PubMed  Google Scholar 

  34. Kawaguchi H, Chikazu D, Nakamura K, Kumegawa M, Hakeda Y . Direct and indirect actions of fibroblast growth factor 2 on osteoclastic bone resorption in cultures. J Bone Miner Res 2000; 15: 466–473.

    Article  CAS  PubMed  Google Scholar 

  35. Chikazu D, Hakeda Y, Ogata N, Nemoto K, Itabashi A, Takato T et al. Fibroblast growth factor (FGF)-2 directly stimulates mature osteoclast function through activation of FGF receptor 1 and p42/p44 MAP kinase. J Biol Chem 2000; 275: 31444–31450.

    Article  CAS  PubMed  Google Scholar 

  36. Zuo J, Jiang J, Dolce C, Holliday LS . Effects of basic fibroblast growth factor on osteoclasts and osteoclast-like cells. Biochem Biophys Res Commun 2004; 318: 162–167.

    Article  CAS  PubMed  Google Scholar 

  37. During A, Penel G, Hardouin P . Understanding the local actions of lipids in bone physiology. Prog Lipid Res 2015; 59: 126–146.

    Article  CAS  PubMed  Google Scholar 

  38. Nocka K, Tan JC, Chiu E, Chu TY, Ray P, Traktman P et al. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J 1990; 9: 1805–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geissler EN, Russell ES . Analysis of the hematopoietic effects of new dominant spotting (W) mutations of the mouse. I. Influence upon hematopoietic stem cells. Exp Hematol 1983; 11: 452–460.

    CAS  PubMed  Google Scholar 

  40. Trevisan M, Yan XQ, Iscove NN . Cycle initiation and colony formation in culture by murine marrow cells with long-term reconstituting potential in vivo. Blood 1996; 88: 4149–4158.

    CAS  PubMed  Google Scholar 

  41. Smith ER, Yeasky T, Wei JQ, Miki RA, Cai KQ, Smedberg JL et al. White spotting variant mouse as an experimental model for ovarian aging and menopausal biology. Menopause 2012; 19: 588–596.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pachero R, Stock H . Effects of radiation on bone. Curr Osteoporos Rep 2013; 11: 299–304.

    Article  Google Scholar 

  43. Chen ST, Gysin R, Kapur S, Baylink DJ, Lau KH . Modifications of the fibroblast growth factor-2 gene led to a marked enhancement in secretion and stability of the recombinant fibroblast growth factor-2 protein. J Cell Biochem 2007; 100: 1493–1508.

    Article  CAS  PubMed  Google Scholar 

  44. Peng H, Chen ST, Wergedal JE, Polo JM, Yee JK, Lau KH et al. Development of an MFG-based retroviral vector system for secretion of high levels of functionally active human BMP4. Mol Ther 2001; 4: 95–104.

    Article  CAS  PubMed  Google Scholar 

  45. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  46. Farley JR, Hall SL, Herring S, Tarbaux NM . Two biochemical indices of mouse bone formation are increased, in vivo, in response to calcitonin. Calcif Tissue Int 1992; 50: 67–73.

    Article  CAS  PubMed  Google Scholar 

  47. Sheng MH, Amoui M, Stiffel V, Srivastava AK, Wergedal JE, Lau KH . Targeted transgenic expression of an osteoclastic transmembrane protein-tyrosine phosphatase in cells of osteoclastic lineage increases bone resorption and bone loss in male young adult mice. J Biol Chem 2009; 284: 11531–11545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Merit Review Entry Program grant from the Department of Veterans Affair Medical Research program. All work, except the irradiation procedure, was performed in facilities provided by the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S L Hall.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, KH., Chen, ST., Wang, X. et al. Opposing effects of Sca-1+ cell-based systemic FGF2 gene transfer strategy on lumbar versus caudal vertebrae in the mouse. Gene Ther 23, 500–509 (2016). https://doi.org/10.1038/gt.2016.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.21

Search

Quick links