Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread

Abstract

Oncolytic herpes simplex virus (HSV) vectors have attracted increasing attention as novel anti-cancer agents. HSV entry is triggered by the binding of glycoprotein D (gD) to its receptors, such as herpesvirus entry mediator or nectin-1. We have recently reported the construction of a fully retargeted HSV platform that incorporates single-chain antibodies (scFv) into gD to mediate entry exclusively via tumor-associated antigens. In this study, we created an scFv directed against epithelial cell adhesion molecule (EpCAM), a recognized carcinoma-associated antigen, and inserted it into the retargeted HSV platform that is ablated for gD recognition of its canonical receptors and contains the entry-enhancing mutations in gB we previously identified. We observed that both initial entry and subsequent cell-to-cell spread of the retargeted virus were stringently dependent on cellular EpCAM expression. Interestingly, the retargeted virus developed larger plaques on some of the human tumor lines tested than the control virus bearing wild-type gD. Intratumoral injection of the retargeted virus revealed antitumor activity in a mouse xenograft model. These observations illustrate the versatility of our retargeted HSV platform as it allows expansion of the oncolytic virus toolbox for the treatment of diverse cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Miest TS, Cattaneo R . New viruses for cancer therapy: meeting clinical needs. Nat Rev Microbiol 2014; 12: 23–24.

    Article  CAS  Google Scholar 

  2. Russell SJ, Peng KW, Bell JC . Oncolytic virotherapy. Nat Biotechnol 2012; 30: 658–670.

    Article  CAS  Google Scholar 

  3. Lichty BD, Breitbach CJ, Stojdl DF, Bell JC . Going viral with cancer immunotherapy. Nat Rev Cancer 2014; 14: 559–567.

    Article  CAS  Google Scholar 

  4. Chou J, Kern ER, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250: 1262–1266.

    Article  CAS  Google Scholar 

  5. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  Google Scholar 

  6. MacLean AR, ul-Fareed M, Robertson L, Harland J, Brown SM . Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the 'a' sequence. J Gen Virol 1991; 72: 631–639.

    Article  CAS  Google Scholar 

  7. Kemeny N, Brown K, Covey A, Kim T, Bhargava A, Brody L et al. Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver. Hum Gene Ther 2006; 17: 1214–1224.

    Article  CAS  Google Scholar 

  8. Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 2006; 12: 6737–6747.

    Article  CAS  Google Scholar 

  9. Todo T, Martuza RL, Rabkin SD, Johnson PA . Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 2001; 98: 6396–6401.

    Article  CAS  Google Scholar 

  10. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  Google Scholar 

  11. Huang YY, Yu Z, Lin SF, Li S, Fong Y, Wong RJ . Nectin-1 is a marker of thyroid cancer sensitivity to herpes oncolytic therapy. J Clin Endocrinol Metab 2007; 92: 1965–1970.

    Article  CAS  Google Scholar 

  12. Yu Z, Adusumilli PS, Eisenberg DP, Darr E, Ghossein RA, Li S et al. Nectin-1 expression by squamous cell carcinoma is a predictor of herpes oncolytic sensitivity. Mol Ther 2007; 15: 103–113.

    Article  CAS  Google Scholar 

  13. Cai WH, Gu B, Person S . Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Viol 1988; 62: 2596–2604.

    CAS  Google Scholar 

  14. Ligas MW, Johnson DC . A herpes simplex virus mutant in which glycoprotein D sequences are replaced by beta-galactosidase sequences binds to but is unable to penetrate into cells. J Virol 1988; 62: 1486–1494.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Desai PJ, Schaffer PA, Minson AC . Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. J Gen Virol 1988; 69: 1147–1156.

    Article  CAS  Google Scholar 

  16. Hutchinson L, Browne H, Wargent V, Davis-Poynter N, Primorac S, Goldsmith K et al. A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 1992; 66: 2240–2250.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shukla D, Spear PG . Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 2001; 108: 503–510.

    Article  CAS  Google Scholar 

  18. Montgomery RI, Warner MS, Lum BJ, Spear PG . Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 1996; 87: 427–436.

    Article  CAS  Google Scholar 

  19. Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG . Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 1998; 280: 1618–1620.

    Article  CAS  Google Scholar 

  20. Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999; 99: 13–22.

    Article  CAS  Google Scholar 

  21. Carfi A, Willis SH, Whitbeck JC, Krummenacher C, Cohen GH, Eisenberg RJ et al. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 2001; 8: 169–179.

    Article  CAS  Google Scholar 

  22. Fusco D, Forghieri C, Campadelli-Fiume G . The pro-fusion domain of herpes simplex virus glycoprotein D (gD) interacts with the gD N terminus and is displaced by soluble forms of viral receptors. Proc Natl Acad Sci USA 2005; 102: 9323–9328.

    Article  CAS  Google Scholar 

  23. Krummenacher C, Supekar VM, Whitbeck JC, Lazear E, Connolly SA, Eisenberg RJ et al. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO J 2005; 24: 4144–4153.

    Article  CAS  Google Scholar 

  24. Uchida H, Marzulli M, Nakano K, Goins WF, Chan J, Hong CS et al. Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2013; 21: 561–569.

    Article  CAS  Google Scholar 

  25. Uchida H, Chan J, Goins WF, Grandi P, Kumagai I, Cohen JB et al. A double mutation in glycoprotein gB compensates for ineffective gD-dependent initiation of herpes simplex virus type 1 infection. J Virol 2010; 84: 12200–12209.

    Article  CAS  Google Scholar 

  26. Herlyn M, Steplewski Z, Herlyn D, Koprowski H . Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies. Proc Natl Acad Sci USA 1979; 76: 1438–1442.

    Article  CAS  Google Scholar 

  27. Patriarca C, Macchi RM, Marschner AK, Mellstedt H . Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev 2012; 38: 68–75.

    Article  CAS  Google Scholar 

  28. Gires O, Klein CA, Baeuerle PA . On the abundance of EpCAM on cancer stem cells. Nat Rev Cancer 2009; 9: 143 author reply 143.

    Article  CAS  Google Scholar 

  29. Armstrong A, Eck SL . EpCAM: a new therapeutic target for an old cancer antigen. Cancer Biol Ther 2003; 2: 320–326.

    Article  CAS  Google Scholar 

  30. Chaudry MA, Sales K, Ruf P, Lindhofer H, Winslet MC . EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges. Br J Cancer 2007; 96: 1013–1019.

    Article  CAS  Google Scholar 

  31. Liljefors M, Nilsson B, Fagerberg J, Ragnhammar P, Mellstedt H, Frodin JE . Clinical effects of a chimeric anti-EpCAM monoclonal antibody in combination with granulocyte-macrophage colony-stimulating factor in patients with metastatic colorectal carcinoma. Int J Oncol 2005; 26: 1581–1589.

    CAS  PubMed  Google Scholar 

  32. Riethmuller G, Holz E, Schlimok G, Schmiegel W, Raab R, Hoffken K et al. Monoclonal antibody therapy for resected Dukes' C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 1998; 16: 1788–1794.

    Article  CAS  Google Scholar 

  33. Weiner LM, Moldofsky PJ, Gatenby RA, O'Dwyer J, O'Brien J, Litwin S et al. Antibody delivery and effector cell activation in a phase II trial of recombinant gamma-interferon and the murine monoclonal antibody CO17-1A in advanced colorectal carcinoma. Cancer Res 1988; 48: 2568–2573.

    CAS  PubMed  Google Scholar 

  34. Marme A, Strauss G, Bastert G, Grischke EM, Moldenhauer G . Intraperitoneal bispecific antibody (HEA125xOKT3) therapy inhibits malignant ascites production in advanced ovarian carcinoma. Int J Cancer 2002; 101: 183–189.

    Article  CAS  Google Scholar 

  35. Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer 2010; 127: 2209–2221.

    Article  CAS  Google Scholar 

  36. Yamaguchi M, Nishii Y, Nakamura K, Aoki H, Hirai S, Uchida H et al. Development of a sensitive screening method for selecting monoclonal antibodies to be internalized by cells. Biochem Biophys Res Commun 2014; 454: 600–603.

    Article  CAS  Google Scholar 

  37. Tischer BK, von Einem J, Kaufer B, Osterrieder N . Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 2006; 40: 191–197.

    Article  CAS  Google Scholar 

  38. Gierasch WW, Zimmerman DL, Ward SL, Vanheyningen TK, Romine JD, Leib DA . Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods 2006; 135: 197–206.

    Article  CAS  Google Scholar 

  39. Schneider U, Bullough F, Vongpunsawad S, Russell SJ, Cattaneo R . Recombinant measles viruses efficiently entering cells through targeted receptors. J Virol 2000; 74: 9928–9936.

    Article  CAS  Google Scholar 

  40. Uchida H, Shah WA, Ozuer A, Frampton Jr AR, Goins WF, Grandi P et al. Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 1 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition. J Virol 2009; 83: 2951–2961.

    Article  CAS  Google Scholar 

  41. Zhou G, Roizman B . Construction and properties of a herpes simplex virus 1 designed to enter cells solely via the IL-13alpha2 receptor. Proc Natl Acad Sci USA 2006; 103: 5508–5513.

    Article  CAS  Google Scholar 

  42. Menotti L, Cerretani A, Hengel H, Campadelli-Fiume G . Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol 2008; 82: 10153–10161.

    Article  CAS  Google Scholar 

  43. Menotti L, Nicoletti G, Gatta V, Croci S, Landuzzi L, De Giovanni C et al. Inhibition of human tumor growth in mice by an oncolytic herpes simplex virus designed to target solely HER-2-positive cells. Proc Natl Acad Sci USA 2009; 106: 9039–9044.

    Article  CAS  Google Scholar 

  44. Winter MJ, Nagtegaal ID, van Krieken JH, Litvinov SV . The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am J Pathol 2003; 163: 2139–2148.

    Article  CAS  Google Scholar 

  45. Mazzacurati L, Marzulli M, Reinhart B, Miyagawa Y, Uchida H, Goins WF et al. Use of miRNA response sequences to block off-target replication and increase the safety of an unattenuated, glioblastoma-targeted oncolytic HSV. Mol Ther 2015; 23: 99–107.

    Article  CAS  Google Scholar 

  46. Rauch DA, Rodriguez N, Roller RJ . Mutations in herpes simplex virus glycoprotein D distinguish entry of free virus from cell-cell spread. J Virol 2000; 74: 11437–11446.

    Article  CAS  Google Scholar 

  47. Babic N, Mettenleiter TC, Flamand A, Ugolini G . Role of essential glycoproteins gII and gp50 in transneuronal transfer of pseudorabies virus from the hypoglossal nerves of mice. J Virol 1993; 67: 4421–4426.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Peeters B, de Wind N, Hooisma M, Wagenaar F, Gielkens A, Moormann R . Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus penetration, but only gII is involved in membrane fusion. J Virol 1992; 66: 894–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Peeters B, Pol J, Gielkens A, Moormann R . Envelope glycoprotein gp50 of pseudorabies virus is essential for virus entry but is not required for viral spread in mice. J Virol 1993; 67: 170–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rauh I, Mettenleiter TC . Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration. J Virol 1991; 65: 5348–5356.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson DC, Huber MT . Directed egress of animal viruses promotes cell-to-cell spread. J Virol 2002; 76: 1–8.

    Article  CAS  Google Scholar 

  52. Uchida H, Chan J, Shrivastava I, Reinhart B, Grandi P, Glorioso JC et al. Novel mutations in gB and gH circumvent the requirement for known gD Receptors in herpes simplex virus 1 entry and cell-to-cell spread. J Virol 2013; 87: 1430–1442.

    Article  CAS  Google Scholar 

  53. Nakamura T, Peng KW, Vongpunsawad S, Harvey M, Mizuguchi H, Hayakawa T et al. Antibody-targeted cell fusion. Nat Biotechnol 2004; 22: 331–336.

    Article  CAS  Google Scholar 

  54. Wang Z, Raifu M, Howard M, Smith L, Hansen D, Goldsby R et al. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3' to 5' exonuclease activity. J Immunol Methods 2000; 233: 167–177.

    Article  CAS  Google Scholar 

  55. Miyagawa Y, Marino P, Verlengia G, Uchida H, Goins WF, Yokota S et al. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc Natl Acad Sci USA 2015; 112: E1632–E1641.

    Article  CAS  Google Scholar 

  56. Schneider CA, Rasband WS, Eliceiri KW . NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671–675.

    Article  CAS  Google Scholar 

  57. Tomayko MM, Reynolds CP . Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989; 24: 148–154.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs David Leib, Nikolaus Osterrieder, Patricia Spear, Gary Cohen, Roselyn Eisenberg, Stephen Russell, Izumi Kumagai and Toshio Kitamura for reagents. We also thank Drs Kiyoko Fukami, Masato Tanaka, Katsuko Tani, Nobuko Matsushita and Yasuhiro Yoshimatsu (Tokyo University of Pharmacy and Life Sciences) for helpful discussions. This work was supported in part by JSPS KAKENHI grant numbers 23800058, 25290059 and 15K15144, the Suzuken Memorial Foundation, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, The Research Foundation for Pharmaceutical Sciences, Takeda Science Foundation, The Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care, The Sumitomo Foundation and the Pancreas Research Foundation of Japan. YM, JBC and JCG were supported by NIH grant CA163205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Uchida.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, T., Uchida, H., Shiroyama, T. et al. Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 23, 479–488 (2016). https://doi.org/10.1038/gt.2016.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.17

This article is cited by

Search

Quick links