Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intradermal delivery of DNA encoding HCV NS3 and perforin elicits robust cell-mediated immunity in mice and pigs

Abstract

Currently, no vaccine is available against hepatitis C virus (HCV), and although DNA vaccines have considerable potential, this has not been realised. Previously, the efficacy of DNA vaccines for human immunodeficiency virus (HIV) and HCV was shown to be enhanced by including the gene for a cytolytic protein, viz. perforin. In this study, we examined the mechanism of cell death by this bicistronic DNA vaccine, which encoded the HCV non-structural protein 3 (NS3) under the control of the CMV promoter and perforin is controlled by the SV40 promoter. Compared with a canonical DNA vaccine and a bicistronic DNA vaccine encoding NS3 and the proapoptotic gene NSP4, the perforin-containing vaccine elicited enhanced cell-mediated immune responses against the NS3 protein in vaccinated mice and pigs, as determined by ELISpot and intracellular cytokine staining, whereas a mouse challenge model suggested that the immunity was CD8+ T-cell-dependent. The results of the study showed that the inclusion of perforin in the DNA vaccine altered the fate of NS3-positive cells from apoptosis to necrosis, and this resulted in more robust immune responses in mice and pigs, the latter of which represents an accepted large animal model in which to test vaccine efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. World Health Organization. Hepatitis C, Fact Sheet No.164. World Health Orgnization: Geneva, Switzerland, 2014.

  2. Reau NS, Jensen DM . Sticker shock and the price of new therapies for hepatitis C: is it worth it? Hepatology 2014; 59: 1246–1249.

    Article  Google Scholar 

  3. Liang TJ . Current progress in development of hepatitis C virus vaccines. Nat Med 2013; 19: 869–878.

    Article  CAS  Google Scholar 

  4. Torresi J, Johnson D, Wedemeyer H . Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J Hepatol 2011; 54: 1273–1285.

    Article  CAS  Google Scholar 

  5. Micallef JM, Kaldor JM, Dore GJ . Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies. J Viral Hepat 2006; 13: 34–41.

    Article  CAS  Google Scholar 

  6. Thimme R, Oldach D, Chang KM, Steiger C, Ray SC, Chisari FV . Determinants of viral clearance and persistence during acute hepatitis C virus infection. J Exp Med 2001; 194: 1395–1406.

    Article  CAS  Google Scholar 

  7. Frick DN . The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target. Curr Issues Mol Biol 2007; 9: 1–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Takaki A, Wiese M, Maertens G, Depla E, Seifert U, Liebetrau A et al. Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat Med 2000; 6: 578–582.

    Article  CAS  Google Scholar 

  9. Major ME, Mihalik K, Puig M, Rehermann B, Nascimbeni M, Rice CM et al. Previously infected and recovered chimpanzees exhibit rapid responses that control hepatitis C virus replication upon rechallenge. J Virol 2002; 76: 6586–6595.

    Article  CAS  Google Scholar 

  10. Nascimbeni M, Mizukoshi E, Bosmann M, Major ME, Mihalik K, Rice CM et al. Kinetics of CD4+ and CD8+ memory T-cell responses during hepatitis C virus rechallenge of previously recovered chimpanzees. J Virol 2003; 77: 4781–4793.

    Article  CAS  Google Scholar 

  11. Gerlach JT, Ulsenheimer A, Gruner NH, Jung MC, Schraut W, Schirren CA et al. Minimal T-cell-stimulatory sequences and spectrum of HLA restriction of immunodominant CD4+ T-cell epitopes within hepatitis C virus NS3 and NS4 proteins. J Virol 2005; 79: 12425–12433.

    Article  CAS  Google Scholar 

  12. Ulsenheimer A, Lucas M, Seth NP, Tilman Gerlach J, Gruener NH, Loughry A et al. Transient immunological control during acute hepatitis C virus infection: ex vivo analysis of helper T-cell responses. J Viral Hepat 2006; 13: 708–714.

    Article  CAS  Google Scholar 

  13. Li L, Saade F, Petrovsky N . The future of human DNA vaccines. J Biotechnol 2012; 162: 171–182.

    Article  CAS  Google Scholar 

  14. Cai Y, Rodriguez S, Hebel H . DNA vaccine manufacture: scale and quality. Expert Rev Vaccines 2009; 8: 1277–1291.

    Article  Google Scholar 

  15. Romani N, Flacher V, Tripp CH, Sparber F, Ebner S, Stoitzner P . Targeting skin dendritic cells to improve intradermal vaccination. Curr Top Microbiol Immunol 2012; 351: 113–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pasparakis M, Haase I, Nestle FO . Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 2014; 14: 289–301.

    Article  CAS  Google Scholar 

  17. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199: 9–26.

    Article  CAS  Google Scholar 

  18. Gargett T, Grubor-Bauk B, Garrod TJ, Yu W, Miller D, Major L et al. Induction of antigen-positive cell death by the expression of perforin, but not DTa, from a DNA vaccine enhances the immune response. Immunol Cell Biol 2014; 92: 359–367.

    Article  CAS  Google Scholar 

  19. Gargett T, Grubor-Bauk B, Miller D, Garrod T, Yu S, Wesselingh S et al. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein. Clin Transl Immunol 2014; 3: e18.

    Article  Google Scholar 

  20. Gummow J, Li Y, Yu W, Garrod T, Wijesundara D, Brennan AJ et al. A multi-antigenic DNA vaccine that induces broad HCV-specific T-cell responses in mice. J Virol 2015; 89: 7991–8002.

    Article  CAS  Google Scholar 

  21. Lowin B, Hahne M, Mattmann C, Tschopp J . Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994; 370: 650–652.

    Article  CAS  Google Scholar 

  22. Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 2010; 468: 447–451.

    Article  CAS  Google Scholar 

  23. Rock KL, Lai JJ, Kono H . Innate and adaptive immune responses to cell death. Immunol Rev 2011; 243: 191–205.

    Article  CAS  Google Scholar 

  24. Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 2009; 458: 899–903.

    Article  CAS  Google Scholar 

  25. Zelenay S, Keller AM, Whitney PG, Schraml BU, Deddouche S, Rogers NC et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J Clin Invest 2012; 122: 1615–1627.

    Article  CAS  Google Scholar 

  26. Bhowmick R, Halder UC, Chattopadhyay S, Chanda S, Nandi S, Bagchi P et al. Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection. J Biol Chem 2012; 287: 35004–35020.

    Article  CAS  Google Scholar 

  27. Ball JM, Mitchell DM, Gibbons TF, Parr RD . Rotavirus NSP4: a multifunctional viral enterotoxin. Viral Immunol 2005; 18: 27–40.

    Article  CAS  Google Scholar 

  28. Ahlen G, Soderholm J, Tjelle T, Kjeken R, Frelin L, Hoglund U et al. In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells. J Immunol 2007; 179: 4741–4753.

    Article  CAS  Google Scholar 

  29. Alvarez-Lajonchere L, Duenas-Carrera S . Complete definition of immunological correlates of protection and clearance of hepatitis C virus infection: a relevant pending task for vaccine development. Int Rev Immunol 2012; 31: 223–242.

    Article  CAS  Google Scholar 

  30. Zhou Y, Zhang Y, Yao Z, Moorman JP, Jia Z . Dendritic cell-based immunity and vaccination against hepatitis C virus infection. Immunology 2012; 136: 385–396.

    Article  CAS  Google Scholar 

  31. Inchauspe G, Feinstone S . Development of a hepatitis C virus vaccine. Clin Liver Dis 2003; 7: 243–259; xi.

    Article  Google Scholar 

  32. Li YP, Kang HN, Babiuk LA, Liu Q . Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models. World J Gastroenterol 2006; 12: 7126–7135.

    Article  CAS  Google Scholar 

  33. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V . The pig: a model for human infectious diseases. Trends Microbiol 2012; 20: 50–57.

    Article  CAS  Google Scholar 

  34. Brennan AJ, Chia J, Browne KA, Ciccone A, Ellis S, Lopez JA et al. Protection from endogenous perforin: glycans and the C terminus regulate exocytic trafficking in cytotoxic lymphocytes. Immunity 2011; 34: 879–892.

    Article  CAS  Google Scholar 

  35. Zarrin AA, Malkin L, Fong I, Luk KD, Ghose A, Berinstein NL . Comparison of CMV, RSV, SV40 viral and Vlambda1 cellular promoters in B and T lymphoid and non-lymphoid cell lines. Biochim Biophys Acta 1999; 1446: 135–139.

    Article  CAS  Google Scholar 

  36. Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B . Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. intermediacy of H(2)O(2)- and p53-dependent pathways. J Biol Chem 2004; 279: 25535–25543.

    Article  CAS  Google Scholar 

  37. Zhan Y, van de Water B, Wang Y, Stevens JL . The roles of caspase-3 and bcl-2 in chemically-induced apoptosis but not necrosis of renal epithelial cells. Oncogene 1999; 18: 6505–6512.

    Article  CAS  Google Scholar 

  38. Fink SL, Cookson BT . Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73: 1907–1916.

    Article  CAS  Google Scholar 

  39. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008; 4: 313–321.

    Article  CAS  Google Scholar 

  40. Ofengeim D, Yuan J . Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 2013; 14: 727–736.

    Article  CAS  Google Scholar 

  41. Prikhod'ko EA, Prikhod'ko GG, Siegel RM, Thompson P, Major ME, Cohen JI . The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities. Virology 2004; 329: 53–67.

    Article  CAS  Google Scholar 

  42. Krysko O, De Ridder L, Cornelissen M . Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique. Apoptosis 2004; 9: 495–500.

    Article  CAS  Google Scholar 

  43. Vernon PJ, Tang D . Eat-me: autophagy, phagocytosis, and reactive oxygen species signaling. Antioxid Redox Signal 2013; 18: 677–691.

    Article  CAS  Google Scholar 

  44. Sawai H, Domae N . Discrimination between primary necrosis and apoptosis by necrostatin-1 in Annexin V-positive/propidium iodide-negative cells. Biochem Biophys Res Commun 2011; 411: 569–573.

    Article  CAS  Google Scholar 

  45. Kramer G, Erdal H, Mertens HJ, Nap M, Mauermann J, Steiner G et al. Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Res 2004; 64: 1751–1756.

    Article  CAS  Google Scholar 

  46. Leers MP, Kolgen W, Bjorklund V, Bergman T, Tribbick G, Persson B et al. Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol 1999; 187: 567–572.

    Article  CAS  Google Scholar 

  47. Schutte B, Henfling M, Kolgen W, Bouman M, Meex S, Leers MP et al. Keratin 8/18 breakdown and reorganization during apoptosis. Exp Cell Res 2004; 297: 11–26.

    Article  CAS  Google Scholar 

  48. Mikkelsen M, Holst PJ, Bukh J, Thomsen AR, Christensen JP . Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain. J Immunol 2011; 186: 2355–2364.

    Article  CAS  Google Scholar 

  49. Yu W, Grubor-Bauk B, Gargett T, Garrod T, Gowans EJ . A novel challenge model to evaluate the efficacy of hepatitis C virus vaccines in mice. Vaccine 2014; 32: 3409–3416.

    Article  CAS  Google Scholar 

  50. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2012; 19: 107–120.

    Article  CAS  Google Scholar 

  51. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015 22: 58–73.

  52. Voskoboinik I, Whisstock JC, Trapani JA . Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 2015; 15: 388–400.

    Article  CAS  Google Scholar 

  53. Lopez JA, Susanto O, Jenkins MR, Lukoyanova N, Sutton VR, Law RH et al. Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood 2013; 121: 2659–2668.

    Article  CAS  Google Scholar 

  54. Liu MA . DNA vaccines: an historical perspective and view to the future. Immunol Rev 2011; 239: 62–84.

    Article  CAS  Google Scholar 

  55. Garrod TJ, Grubor-Bauk B, Gargett T, Li Y, Miller DS, Yu W et al. DNA vaccines encoding membrane-bound or secreted forms of heat shock protein 70 exhibit improved potency. Eur J Immunol 2014; 44: 1992–2002.

    Article  CAS  Google Scholar 

  56. Morrow MP, Pankhong P, Laddy DJ, Schoenly KA, Yan J, Cisper N et al. Comparative ability of IL-12 and IL-28B to regulate Treg populations and enhance adaptive cellular immunity. Blood 2009; 113: 5868–5877.

    Article  CAS  Google Scholar 

  57. Voskoboinik I, Thia MC, Fletcher J, Ciccone A, Browne K, Smyth MJ et al. Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J Biol Chem 2005; 280: 8426–8434.

    Article  CAS  Google Scholar 

  58. Bugarcic A, Taylor JA . Rotavirus nonstructural glycoprotein NSP4 is secreted from the apical surfaces of polarized epithelial cells. J Virol 2006; 80: 12343–12349.

    Article  CAS  Google Scholar 

  59. Labrinidis A, Diamond P, Martin S, Hay S, Liapis V, Zinonos I et al. Apo2L/TRAIL inhibits tumor growth and bone destruction in a murine model of multiple myeloma. Clin Cancer Res 2009; 15: 1998–2009.

    Article  CAS  Google Scholar 

  60. BG-B Tessa Gargett, Miller D, Garrod T, Yu S, Wesselingh S, Suhrbier A, Gowans Eric J . Increase in DNA vaccine efficacy by virosome and co-expression of a cytolytic protein. Clin Transl Immunol 2014; 3.

Download references

Acknowledgements

We thank Dr Paul Radspinner (FluGen Inc., Madison, WI, USA) who provided the microneedle device and Renee Herber for training to use the device. We also thank Dr John Taylor (University of Auckland, New Zealand) and Dr Barbara Coulson (University of Melbourne, Australia) for the gift of the NSP4 construct. We acknowledge the kind gift of the HCV peptide pools, which were obtained through the AIDS Reagent and Reference Reagent Program, Division of AIDS, NIAID, National Institutes of Health, USA. We also thank Dr Stuart Howell for statistical advice. This research was supported by grants APP1026293, 543139 and 543143 from the National Health and Medical Research Council (NHMRC) of Australia, grant BF040005 from the Australian-Indian biotechnology fund and a grant from the Hospital Research Foundation (THRF). DW is a Research Fellow supported by THRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Grubor-Bauk.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grubor-Bauk, B., Yu, W., Wijesundara, D. et al. Intradermal delivery of DNA encoding HCV NS3 and perforin elicits robust cell-mediated immunity in mice and pigs. Gene Ther 23, 26–37 (2016). https://doi.org/10.1038/gt.2015.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.86

This article is cited by

Search

Quick links