Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression

Abstract

Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 1012 viral particles kg−1 (1010 infective units kg−1) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Badminton MN, Elder GH . Molecular mechanisms of dominant expression in porphyria. J Inherit Metab Dis 2005; 28: 277–286.

    Article  CAS  PubMed  Google Scholar 

  2. Meyer UA, Schuurmans MM, Lindberg RL . Acute porphyrias: pathogenesis of neurological manifestations. Semin Liver Dis 1998; 18: 43–52.

    Article  CAS  PubMed  Google Scholar 

  3. Puy H, Gouya L, Deybach JC . Porphyrias. Lancet 2010; 375: 924–937.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson KE, Bloomer JR, Bonkovsky HL, Kushner JP, Pierach CA, Pimstone NR et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 2005; 142: 439–450.

    Article  PubMed  Google Scholar 

  5. Unzu C, Sampedro A, Mauleon I, Alegre M, Beattie SG, de Salamanca RE et al. Sustained enzymatic correction by rAAV-mediated liver gene therapy protects against induced motor neuropathy in acute porphyria mice. Mol Ther 2011; 19: 243–250.

    Article  CAS  PubMed  Google Scholar 

  6. Unzu C, Sampedro A, Mauleon I, Gonzalez-Aparicio M, Enriquez de Salamanca R, Prieto J et al. Helper-dependent adenoviral liver gene therapy protects against induced attacks and corrects protein folding stress in acute intermittent porphyria mice. Hum Mol Genet 2013; 22: 2929–2940.

    Article  CAS  PubMed  Google Scholar 

  7. Yasuda M, Bishop DF, Fowkes M, Cheng SH, Gan L, Desnick RJ . AAV8-mediated gene therapy prevents induced biochemical attacks of acute intermittent porphyria and improves neuromotor function. Mol Ther 2010; 18: 17–22.

    Article  CAS  PubMed  Google Scholar 

  8. Johansson A, Nowak G, Moller C, Blomberg P, Harper P . Adenoviral-mediated expression of porphobilinogen deaminase in liver restores the metabolic defect in a mouse model of acute intermittent porphyria. Mol Ther 2004; 10: 337–343.

    Article  CAS  PubMed  Google Scholar 

  9. Brunetti-Pierri N . Gene therapy for inborn errors of liver metabolism: progress towards clinical applications. Ital J Pediatr 2008; 34: 2.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gordts SC, Van Craeyveld E, Jacobs F, De Geest B . Gene transfer for inherited metabolic disorders of the liver: immunological challenges. Curr Pharm Des 2011; 17: 2542–2549.

    Article  CAS  PubMed  Google Scholar 

  11. Brunetti-Pierri N, Ng P . Helper-dependent adenoviral vectors for liver-directed gene therapy. Hum Mol Genet 2011; 20: R7–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Muruve DA, Cotter MJ, Zaiss AK, White LR, Liu Q, Chan T et al. Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol 2004; 78: 5966–5972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Brunetti-Pierri N, Ng P . Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors. Gene Therapy 2008; 15: 553–560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Oka K, Belalcazar LM, Dieker C, Nour EA, Nuno-Gonzalez P, Paul A et al. Sustained phenotypic correction in a mouse model of hypoalphalipoproteinemia with a helper-dependent adenovirus vector. Gene Therapy 2007; 14: 191–202.

    Article  CAS  PubMed  Google Scholar 

  15. Brunetti-Pierri N, Ng T, Iannitti D, Cioffi W, Stapleton G, Law M et al. Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors. Hum Gene Ther 2013; 24: 761–765.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Morral N, O'Neal W, Rice K, Leland M, Kaplan J, Piedra PA et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci USA 1999; 96: 12816–12821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brunetti-Pierri N, Stapleton GE, Palmer DJ, Zuo Y, Mane VP, Finegold MJ et al. Pseudo-hydrodynamic delivery of helper-dependent adenoviral vectors into non-human primates for liver-directed gene therapy. Mol Ther 2007; 15: 732–740.

    Article  CAS  PubMed  Google Scholar 

  18. Brunetti-Pierri N, Liou A, Patel P, Palmer D, Grove N, Finegold M et al. Balloon catheter delivery of helper-dependent adenoviral vector results in sustained, therapeutic hFIX expression in rhesus macaques. Mol Ther 2012; 20: 1863–1870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nayak S, Herzog RW . Progress and prospects: immune responses to viral vectors. Gene Therapy 2010; 17: 295–304.

    Article  CAS  PubMed  Google Scholar 

  20. Ahi YS, Bangari DS, Mittal SK . Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther 2011; 11: 307–320.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  PubMed  Google Scholar 

  22. McCaffrey AP, Fawcett P, Nakai H, McCaffrey RL, Ehrhardt A, Pham TT et al. The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol Ther 2008; 16: 931–941.

    Article  CAS  PubMed  Google Scholar 

  23. Khare R, Chen CY, Weaver EA, Barry MA . Advances and future challenges in adenoviral vector pharmacology and targeting. Curr Gene Ther 2011; 11: 241–258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Soonawalla ZF, Orug T, Badminton MN, Elder GH, Rhodes JM, Bramhall SR et al. Liver transplantation as a cure for acute intermittent porphyria. Lancet 2004; 363: 705–706.

    Article  PubMed  Google Scholar 

  25. Seth AK, Badminton MN, Mirza D, Russell S, Elias E . Liver transplantation for porphyria: who, when, and how? Liver Transpl 2007; 13: 1219–1227.

    Article  PubMed  Google Scholar 

  26. Dowman JK, Gunson BK, Mirza DF, Bramhall SR, Badminton MN, Newsome PN . Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis. Liver Transpl 2012; 18: 195–200.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wahlin S, Harper P, Sardh E, Andersson C, Andersson DE, Ericzon BG . Combined liver and kidney transplantation in acute intermittent porphyria. Transpl Int 2010; 23: e18–e21.

    Article  PubMed  Google Scholar 

  28. Cao H, Yang T, Li XF, Wu J, Duan C, Coates AL et al. Readministration of helper-dependent adenoviral vectors to mouse airway mediated via transient immunosuppression. Gene Therapy 2011; 18: 173–181.

    Article  CAS  PubMed  Google Scholar 

  29. Smith TA, White BD, Gardner JM, Kaleko M, McClelland A . Transient immunosuppression permits successful repetitive intravenous administration of an adenovirus vector. Gene Therapy 1996; 3: 496–502.

    CAS  PubMed  Google Scholar 

  30. Bangari DS, Mittal SK . Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther 2006; 6: 215–226.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Haegel-Kronenberger H, Haanstra K, Ziller-Remy C, Ortiz Buijsse AP, Vermeiren J, Stoeckel F et al. Inhibition of costimulation allows for repeated systemic administration of adenoviral vector in rhesus monkeys. Gene Therapy 2004; 11: 241–252.

    Article  CAS  PubMed  Google Scholar 

  32. Fontanellas A, Hervas-Stubbs S, Mauleon I, Dubrot J, Mancheno U, Collantes M et al. Intensive pharmacological immunosuppression allows for repetitive liver gene transfer with recombinant adenovirus in nonhuman primates. Mol Ther 2010; 18: 754–765.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Crettaz J, Berraondo P, Mauleon I, Ochoa-Callejero L, Shankar V, Barajas M et al. Intrahepatic injection of adenovirus reduces inflammation and increases gene transfer and therapeutic effect in mice. Hepatology 2006; 44: 623–632.

    Article  CAS  PubMed  Google Scholar 

  34. Pastore N, Nusco E, Piccolo P, Castaldo S, Vanikova J, Vetrini F et al. Improved efficacy and reduced toxicity by ultrasound-guided intrahepatic injections of helper-dependent adenoviral vector in Gunn rats. Hum Gene Ther Methods 2013; 24: 321–327.

    Article  CAS  PubMed  Google Scholar 

  35. Brunetti-Pierri N, Ng T, Iannitti DA, Palmer DJ, Beaudet AL, Finegold MJ et al. Improved hepatic transduction, reduced systemic vector dissemination, and long-term transgene expression by delivering helper-dependent adenoviral vectors into the surgically isolated liver of nonhuman primates. Hum Gene Ther 2006; 17: 391–404.

    Article  CAS  PubMed  Google Scholar 

  36. Khare R, Hillestad ML, Xu Z, Byrnes AP, Barry MA . Circulating antibodies and macrophages as modulators of adenovirus pharmacology. J Virol 2013; 87: 3678–3686.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Xu Z, Qiu Q, Tian J, Smith JS, Conenello GM, Morita T et al. Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat Med 2013; 19: 452–457.

    Article  CAS  PubMed  Google Scholar 

  38. Xu Z, Tian J, Smith JS, Byrnes AP . Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol 2008; 82: 11705–11713.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Unzu C, Melero I, Morales-Kastresana A, Sampedro A, Serrano-Mendioroz I, Azpilikueta A et al. Innate functions of immunoglobulin M lessen liver gene transfer with helper-dependent adenovirus. PLoS One 2014; 9: e85432.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Unzu C, Hervas-Stubbs S, Sampedro A, Mauleon I, Mancheno U, Alfaro C et al. Transient and intensive pharmacological immunosuppression fails to improve AAV-based liver gene transfer in non-human primates. J Transl Med 2012; 10: 122.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Paneda A, Lopez-Franco E, Kaeppel C, Unzu C, Gil-Royo AG, D'Avola D et al. Safety and liver transduction efficacy of rAAV5-cohPBGD in nonhuman primates: a potential therapy for acute intermittent porphyria. Hum Gene Ther 2013; 24: 1007–1017.

    Article  CAS  PubMed  Google Scholar 

  42. Nunes FA, Furth EE, Wilson JM, Raper SE . Gene transfer into the liver of nonhuman primates with E1-deleted recombinant adenoviral vectors: safety of readministration. Hum Gene Ther 1999; 10: 2515–2526.

    Article  CAS  PubMed  Google Scholar 

  43. Morral N, O'Neal WK, Rice K, Leland MM, Piedra PA, Aguilar-Cordova E et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 2002; 13: 143–154.

    Article  CAS  PubMed  Google Scholar 

  44. Wilson JM . Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab 2009; 96: 151–157.

    Article  CAS  PubMed  Google Scholar 

  45. Brunetti-Pierri N, Stapleton GE, Law M, Breinholt J, Palmer DJ, Zuo Y et al. Efficient, long-term hepatic gene transfer using clinically relevant HDAd doses by balloon occlusion catheter delivery in nonhuman primates. Mol Ther 2009; 17: 327–333.

    Article  CAS  PubMed  Google Scholar 

  46. Zheng HY, Zhang MX, Pang W, Zheng YT . Aged Chinese rhesus macaques suffer severe phenotypic T- and B-cell aging accompanied with sex differences. Exp Gerontol 2014; 55: 113–119.

    Article  PubMed  Google Scholar 

  47. Martin LN . Chromatographic fractionation of rhesus monkey (Macaca mulatta) IgG subclasses using deae cellulose and protein A-sepharose. J Immunol Methods 1982; 50: 319–329.

    Article  CAS  PubMed  Google Scholar 

  48. Damian RT, Greene ND, Kalter SS . IgG subclasses in the baboon (Papio cynocephalus. J Immunol 1971; 106: 246–257.

    CAS  PubMed  Google Scholar 

  49. Scinicariello F, Engleman CN, Jayashankar L, McClure HM, Attanasio R . Rhesus macaque antibody molecules: sequences and heterogeneity of alpha and gamma constant regions. Immunology 2004; 111: 66–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Shearer MH, Dark RD, Chodosh J, Kennedy RC . Comparison and characterization of immunoglobulin G subclasses among primate species. Clin Diagn Lab Immunol 1999; 6: 953–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Khare R, May SM, Vetrini F, Weaver EA, Palmer D, Rosewell A et al. Generation of a Kupffer cell-evading adenovirus for systemic and liver-directed gene transfer. Mol Ther 2011; 19: 1254–1262.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001; 3: 28–35.

    Article  CAS  PubMed  Google Scholar 

  53. Racine R, Winslow GM . IgM in microbial infections: taken for granted? Immunol Lett 2009; 125: 79–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Grisham JW . Organizational principles of the liver. In: Arias IM (ed). The Liver: Biology and Pathobiology, 5th edn. John Wiley & Sons Ltd.: : Chichester, West Sussex, UK, 2009, pp 3–16.

    Google Scholar 

  55. Gonzalez-Aparicio M, Mauleon I, Alzuguren P, Bunuales M, Gonzalez-Aseguinolaza G, San Martin C et al. Self-inactivating helper virus for the production of high-capacity adenoviral vectors. Gene Therapy 2011; 18: 1025–1033.

    Article  CAS  PubMed  Google Scholar 

  56. Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P . Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 2004; 15: 35–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Alberto Espinal and Elena Ciordia for animal care and vivarium management. We also thank Dr Laura Guembe (Morphology and Imaging Unit, CIMA, Pamplona, Italy) for help in preparing and staining the tissue sections. Victor Segura is appreciatively acknowledged for help with statistical analysis. Dr Hernández-Alcoceba, Dr González-Aparicio, Dr Prieto, Quiroga, Dr Avila and Dr Lasarte are acknowledged for helpful discussions and scientific support. This work was supported by grants from UTE project of Centro de Investigación Médica Aplicada (CIMA-University of Navarra), Fundación Mutua Madrileña and Spanish Institute of Health Carlos III (FIS) co-financed by European FEDER funds (PI09/02639 and PI12/02785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Fontanellas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unzu, C., Melero, I., Hervás-Stubbs, S. et al. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression. Gene Ther 22, 856–865 (2015). https://doi.org/10.1038/gt.2015.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.64

This article is cited by

Search

Quick links