Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

β-Cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection

Abstract

Protection of β cells from autoimmune destruction potentially cures type 1 diabetes mellitus (T1D). During antigen presentation, interactions between cytotoxic T-lymphocyte antigen-4 (CTLA4) and B7 molecules, or programmed death 1 (PD1) and its ligand PDL1, negatively regulate immune responses in a non-redundant manner. Here we employed β-cell-targeted adeno-associated virus serotype 8 (AAV8)-based vectors to overexpress an artificial PDL1-CTLA4Ig polyprotein or interleukin 10 (IL10). β-Cell-targeted expression of PDL1-CTLA4Ig or IL10 preserved β-cell mass and protected NOD mice from T1D development. When NOD mice were treated with vectors at early onset of hyperglycemia, PDL1-CTLA4Ig or IL10 alone failed to normalize the early onset of hyperglycemia. When drug-induced diabetic mice received major histocompatibility complex (MHC)-matched allo-islets, with or without pretreatment of the PDL1-CTLA4Ig-expressing vector, PDL1-CTLA4Ig-expressing islets were protected from rejection for at least 120 days. Similarly, transplantation of PDL1-CTLA4Ig-expressing MHC-matched islets into mice with established T1D resulted in protection of allo-islets from acute rejection, although islet grafts were eventually rejected. Thus the present study demonstrates the potent immuno-suppressive effects of β-cell-targeted PDL1-CTLA4Ig overexpression against T1D development and allo-islet rejection. The gene-based simultaneous inhibition of PD1 and CTLA4 pathways provides a unique strategy for immunosuppression-free tissue/organ transplantation, especially in the setting of no established autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Daneman D . Type 1 diabetes. Lancet 2006; 367: 847–858.

    Article  CAS  Google Scholar 

  2. Bluestone JA, Herold K, Eisenbarth G . Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464: 1293–1300.

    Article  CAS  Google Scholar 

  3. Chatzigeorgiou A, Harokopos V, Mylona-Karagianni C, Tsouvalas E, Aidinis V, Kamper EF . The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time. Ann Med 2010; 42: 426–438.

    Article  CAS  Google Scholar 

  4. Holditch SJ, Terzic A, Ikeda Y . Concise review: pluripotent stem cell-based regenerative applications for failing beta-cell function. Stem Cells Transl Med 2014; 3: 653–661.

    Article  CAS  Google Scholar 

  5. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002; 346: 1692–1698.

    Article  CAS  Google Scholar 

  6. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 2005; 54: 1763–1769.

    Article  CAS  Google Scholar 

  7. Sherry N, Hagopian W, Ludvigsson J, Jain SM, Wahlen J, Ferry RJ Jr et al. Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet 2011; 378: 487–497.

    Article  CAS  Google Scholar 

  8. Staeva TP, Chatenoud L, Insel R, Atkinson MA . Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes 2013; 62: 9–17.

    Article  CAS  Google Scholar 

  9. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med 2006; 355: 1318–1330.

    Article  CAS  Google Scholar 

  10. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54: 2060–2069.

    Article  CAS  Google Scholar 

  11. Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B et al. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care 2012; 35: 1436–1445.

    Article  CAS  Google Scholar 

  12. Bellin MD, Kandaswamy R, Parkey J, Zhang HJ, Liu B, Ihm SH et al. Prolonged insulin independence after islet allotransplants in recipients with type 1 diabetes. Am J Transplant 2008; 8: 2463–2470.

    Article  CAS  Google Scholar 

  13. Robertson RP . Islet transplantation as a treatment for diabetes - a work in progress. N Engl J Med 2004; 350: 694–705.

    Article  CAS  Google Scholar 

  14. Hirshberg B, Rother KI, Digon BJ 3rd, Lee J, Gaglia JL, Hines K et al. Benefits and risks of solitary islet transplantation for type 1 diabetes using steroid-sparing immunosuppression: the National Institutes of Health experience. Diabetes Care 2003; 26: 3288–3295.

    Article  Google Scholar 

  15. Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med 2003; 349: 931–940.

    Article  CAS  Google Scholar 

  16. Nir T, Melton DA, Dor Y . Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 2007; 117: 2553–2561.

    Article  CAS  Google Scholar 

  17. Rostambeigi N, Lanza IR, Dzeja PP, Deeds MC, Irving BA, Reddi HV et al. Unique cellular and mitochondrial defects mediate FK506-induced islet beta-cell dysfunction. Transplantation 2011; 91: 615–623.

    Article  CAS  Google Scholar 

  18. Potter KJ, Westwell-Roper CY, Klimek-Abercrombie AM, Warnock GL, Verchere CB . Death and dysfunction of transplanted beta-cells: lessons learned from type 2 diabetes? Diabetes 2014; 63: 12–19.

    Article  CAS  Google Scholar 

  19. Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA . Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med 1991; 173: 721–730.

    Article  CAS  Google Scholar 

  20. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ . Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007; 27: 111–122.

    Article  CAS  Google Scholar 

  21. Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009; 10: 1185–1192.

    Article  CAS  Google Scholar 

  22. Curran MA, Montalvo W, Yagita H, Allison JP . PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 2010; 107: 4275–4280.

    Article  CAS  Google Scholar 

  23. Orban T, Bundy B, Becker DJ, Dimeglio LA, Gitelman SE, Goland R et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care 2014; 37: 1069–1075.

    Article  CAS  Google Scholar 

  24. Tonne JM, Sakuma T, Deeds MC, Munoz-Gomez M, Barry MA, Kudva YC et al. Global gene expression profiling of pancreatic islets in mice during streptozotocin-induced beta-cell damage and pancreatic Glp-1 gene therapy. Dis Model Mech 2013; 6: 1236–1245.

    Article  CAS  Google Scholar 

  25. Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L et al. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci USA 2014; 111: E1211–E1220.

    Article  CAS  Google Scholar 

  26. Tonne JM, Sakuma T, Munoz-Gomez M, El Khatib M, Barry MA, Kudva YC et al. Beta cell regeneration after single-round immunological destruction in a mouse model. Diabetologia 2014; 58: 313–323.

    Article  Google Scholar 

  27. Mueller C, Braag SA, Martino AT, Tang Q, Campbell-Thompson M, Flotte TR . The pros and cons of immunomodulatory IL-10 gene therapy with recombinant AAV in a Cftr-/- -dependent allergy mouse model. Gene Therapy 2009; 16: 172–183.

    Article  CAS  Google Scholar 

  28. Yang Z, Chen M, Wu R, Fialkow LB, Bromberg JS, McDuffie M et al. Suppression of autoimmune diabetes by viral IL-10 gene transfer. J Immunol 2002; 168: 6479–6485.

    Article  CAS  Google Scholar 

  29. van Belle TL, Coppieters KT, von Herrath MG . Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91: 79–118.

    Article  CAS  Google Scholar 

  30. Zmuda EJ, Powell CA, Hai T . A method for murine islet isolation and subcapsular kidney transplantation. J Vis Exp 2011; 13: 2096.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Mayo Foundation, Eisenberg Stem Cell Trust, Minnesota Partnership Grant (to YI), Mayo Center for Regenerative Medicine (to YI and TS) and National Institutes of Health (HL098502 to YI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Ikeda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khatib, M., Sakuma, T., Tonne, J. et al. β-Cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection. Gene Ther 22, 430–438 (2015). https://doi.org/10.1038/gt.2015.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.18

This article is cited by

Search

Quick links