Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Shedding of clinical-grade lentiviral vectors is not detected in a gene therapy setting

Abstract

Gene therapy using viral vectors that stably integrate into ex vivo cultured cells holds great promises for the treatment of monogenic diseases as well as cancer. However, carry-over of infectious vector particles has been described to occur upon ex vivo transduction of target cells. This, in turn, may lead to inadvertent spreading of viral particles to off-target cells in vivo, raising concerns for potential adverse effects, such as toxicity of ectopic transgene expression, immunogenicity from in vivo transduced antigen-presenting cells and, possibly, gene transfer to germline cells. Here, we have investigated factors influencing the extent of lentiviral vector (LV) shedding upon ex vivo transduction of human hematopoietic stem and progenitor cells. Our results indicate that, although vector carry-over is detectable when using laboratory-grade vector stocks, the use of clinical-grade vector stocks strongly decreases the extent of inadvertent transduction of secondary targets, likely because of the higher degree of purification. These data provide supportive evidence for the safe use of the LV platform in clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Manganini M, Serafini M, Bambacioni F, Casati C, Erba E, Follenzi A et al. A human immunodeficiency virus type 1 pol gene-derived sequence 8cPPT/CTS) increases the efficiency of transduction of human nondividing monocytes and T lymphocytes by lentiviral vectors. Hum Gene Ther 2002; 13: 1793–1807.

    Article  CAS  PubMed  Google Scholar 

  2. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E et al. Preclinical safety and efficacy of human CD34+ cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich Syndrome. Mol Ther 2013; 21: 175–184.

    Article  CAS  PubMed  Google Scholar 

  4. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pauwels K, Gijsbers R, Toelen J, Schambach A, Willard-Gallo K, Verheust C et al. State-of-the-art lentiviral vector for research use: risk assessment and biosafety recommendations. Curr Gene Ther 2009; 9: 459–474.

    Article  CAS  PubMed  Google Scholar 

  7. Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, Lu X et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006; 103: 17372–17377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14: 1264–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341: 1233158.

    Article  PubMed  Google Scholar 

  12. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013; 341: 1233151.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010; 467: 318–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326: 818–823.

    Article  CAS  PubMed  Google Scholar 

  15. Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH . Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641–6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pan Y, Scarlett JM, Luoh T, Kurre P . Prolonged adherence of human immunodeficiency virus-derived vector particles to hematopoietic target cells leads to secondary transduction in vitro and in vivo. J Virol 2007; 81: 639–649.

    Article  CAS  PubMed  Google Scholar 

  17. O'Neill LS, Skinner AM, Woodward JA, Kurre P . Entry kinetics and cell-cell transmission of surface-bound retroviral vector particles. J Gene Med 2010; 12: 463–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pizzato M, Blair ED, Fling M, Kopf J, Tomassetti A, Weiss RA et al. Evidence for nonspecific adsorption of targeted retrovirus vector particles to cells. Gene Therapy 2001; 8: 1088–1093.

    Article  CAS  PubMed  Google Scholar 

  19. Greco G, Pal S, Pasqualini R, Schnapp LM . Matrix fibronectin increases HIV stability and infectivity. Immunology 2002; 168: 5722–5729.

    Article  CAS  Google Scholar 

  20. Lei P, Bajaj B, Andreatis ST . Retrovirus-associated heparan sulfate mediates immobilization and gene transfer on recombinant fibronectin. J Virol 2002; 76: 8722–8728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walker SJ, Pizzato M, Takeuchi Y, Devereux S . Heparin binds to murine leukemia virus and inhibits env-independent attachment and infection. J Virol 2002; 76: 6909–6918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carstanjen D, Dutt P, Moritz T . Heparin inhibits retrovirus binding to fibronectin as well as retrovirus gene transfer on fibronectin fragments. J Virol 2001; 75: 6218–6222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DePolo NJ, Reed JD, Sheridan PL, Townsend K, Sauter SL, Jolly DJ et al. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2000; 2: 218–222.

    Article  CAS  PubMed  Google Scholar 

  24. Cole C, Qiao J, Kottke T, Diaz RM, Ahmed A, Sanchez-Perez L et al. Tumor-targeted, systemic delivery of therapeutic viral vectors using hitchhiking on antigen-specific T cells. Nat Med 2005; 11: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  25. Follenzi A, Naldini L . HIV-based vectors. Preparation and use. Methods Mol Med 2002; 69: 259–274.

    CAS  PubMed  Google Scholar 

  26. Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L . Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 2002; 13: 243–260.

    Article  CAS  PubMed  Google Scholar 

  27. Biffi A, Bartholomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M et al. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 2011; 117: 5332–5339.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt M, Schwarzwaelder K, Bartholomae C, Zaoui K, Ball C, Pilz I et al. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 2007; 4: 1051–1057.

    Article  CAS  PubMed  Google Scholar 

  29. Bukovsky AA, Song JP, Naldini L . Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J Virol 1999; 73: 7087–7092.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Biffi A, Capotondo A, Fasano S, Del Carro U, Marchesini S, Azuma H et al. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 2006; 116: 3070–3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Capotondo A, Cesani M, Pepe S, Fasano S, Gregori S, Tononi L et al. Safety of arylsulfatase A overexpression for gene therapy of metachromatic leukodystrophy. Hum Gene Ther 2007; 18: 821–836.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondazione Telethon (TIGET grant B2), the European Leukodystrophy Foundation (ELA 2007-00515) and Italian Ministry of Health (Progetto Giovani Ricercatori GR-2008-57) to AB. We thank GlaxoSmithKline R&D division for critical reading of the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Biffi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesani, M., Plati, T., Lorioli, L. et al. Shedding of clinical-grade lentiviral vectors is not detected in a gene therapy setting. Gene Ther 22, 496–502 (2015). https://doi.org/10.1038/gt.2015.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.10

This article is cited by

Search

Quick links