Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Antitumor effects of baculovirus-infected dendritic cells against human pancreatic carcinoma

Abstract

Recently, we showed that baculovirus (BV)-infected dendritic cells (DCs) (BV-DCs) induced antitumor immunity against established tumors in mice. These antitumor effects were CD8+ T-cell and natural killer (NK) cell dependent but CD4+ T-cell independent. In the current study, we examined the antitumor effect of BV-DCs on human pancreatic cancer cells (AsPC-1). After treatment with BV-infected bone marrow-derived dendritic cells (BMDCs), human pancreatic tumors caused by AsPC-1 cells in a nude mouse model were significantly reduced in size, and the survival of the mice was improved compared with that of non-immature BMDC (iDC)- and BV-DC-immunized mice. We also found that wild-type BV could activate human DCs (HDCs) and that NK cells were activated by BV-infected HDCs (BHDCs). Our findings show that BV-DCs can induce antitumor immunity, which paves the way for the use of this technique as an effective tool for DC immunotherapy against malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Tjia SY, zu Altenschildesche GM, Doerfler W . Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells. Virology 1983; 125: 107–117.

    CAS  Google Scholar 

  2. Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M . Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci USA 1995; 92: 10099–10103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Condreay JP, Witherspoon SM, Clay WC, Kost TA . Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci USA 1999; 96: 127–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suzuki T, Chang MO, Kitajima M, Takaku H . Baculovirus activates murine dendritic cells and induces non-specific NK cell and T cell immune responses. Cellular Immunol 2010; 262: 35–43.

    Article  CAS  Google Scholar 

  5. Hofmann C, Strauss M . Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther 1998; 5: 531–536.

    Article  CAS  PubMed  Google Scholar 

  6. Nasta F, Ubald V, Pace L, Doria G, Pioli C . Cytotoxic T-lymphocyte antigen-4 inhibits GATA-3 but not T-bet mRNA expression during T helper cell differentiation. Immunology 2006; 117: 358–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Molinari P, Crespo MI, Gravisacol MJ, Taboga O, Moron G . Baculovirus capsid display potentiates OVA cytotoxic and innate immune responses. PLoS One 2011; 6: e24108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beck NB, Sidhu JS, Omiecinski CJ . Baculovirus vectors repress phenobarbital-mediated gene induction and stimulate cytokine expression in primary cultures of rat hepatocytes. Gene Ther 2000; 7: 1274–1283.

    Article  CAS  PubMed  Google Scholar 

  9. Gronowski AM, Hilbert DM, Sheehan KCF, Schreiber RD . Baculovirus stimulates antiviral effects in mammalian cells. J Virol 1999; 73: 9944–9951.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Abe T, Takahashi H, Hamazaki H, Miyano-Kurosaki N, Matsuura Y, Takaku H . Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J Immunol 2003; 171: 1133–1139.

    Article  CAS  PubMed  Google Scholar 

  11. Abe T, Hemmi H, Miyamoto H, Moriishi K, Tamura S, Takaku H et al. Involvement of the Toll-Like Receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J Virol 2005; 79: 2847–2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abe T, Kaname Y, Wen X, Tani H, Moriishi K, Uematsu S et al. Baculovirus induces type I interferon production through Toll-Like receptor-dependent and -independent pathways in a cell-type-specific manner. J Virol 2009; 83: 7629–7640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abe T, Matsuura Y . Host innate immune responses induced by baculovirus in mammals. Curr Gene Ther 2010; 10: 226–231.

    Article  CAS  PubMed  Google Scholar 

  14. Kitajima M, Abe T, Miyano-Kurosaki N, Taniguchi M, Nakayama T, Takaku H . Induction of natural killer cell-dependent antitumor immunity by the Autographa californica multiple nuclear polyhedrosis virus. Mol Ther 2008; 16: 261–268.

    Article  CAS  PubMed  Google Scholar 

  15. Nishibe Y, Kaneko H, Suzuki H, Abe T, Matsuura Y, Takaku H . Baculovirus-mediated interferon alleviates dimethylnitrosamine-induced liver cirrhosis symptoms in a murine model. Gene Ther 2008; 15: 990–997.

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki T, Oo Chang M, Kitajima M, Takaku H . Induction of antitumor immunity against mouse carcinoma by baculovirus-infected dendritic cells. Cell Mol Immunol 2010; 7: 440–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jemal A, Bray F, Center M, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  18. Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004; 11: 1200–1210.

    Article  Google Scholar 

  19. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y et al. FOLFIRINOX versus gemcitabine for metasrtatic pancreatic cancer. N Engl J Med 2011; 364: 1817–1825.

    Article  CAS  PubMed  Google Scholar 

  20. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369: 1691–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salmons B, Brandtner EM, Hettrich K, Wagenknecht W, Volkert B, Fischer S et al. Encapsulated cells to focus the metabolic activation of anticancer drugs. Curr Opin Mol Ther. 2010; 12: 450–460.

    CAS  PubMed  Google Scholar 

  22. Laheru D, Jaffee E . Immunotherapy for pancreatic cancer-science driving clinical progress. Nat Rev Cancer 2005; 5: 459–467.

    Article  CAS  PubMed  Google Scholar 

  23. Ardavin C, Amigorena S, Reis e Sousa C . Dendritic cells: immunobiology and cancer immunotherapy. Immunity 2004; 20: 17–23.

    Article  CAS  PubMed  Google Scholar 

  24. Banchereau J, Palucka AK . Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5: 296–306.

    Article  CAS  PubMed  Google Scholar 

  25. Steinman RM, Banchereau J . Taking dendritic cells intomedicine. Nature 2007; 449: 419–426.

    Article  CAS  PubMed  Google Scholar 

  26. Gong J, Koido S, Calderwood SK . Cell fusion: from hybridoma to dendritic cell-based vaccine. Expert Rev Vaccines 2007; 7: 1055–1068.

    Article  Google Scholar 

  27. Koido S, Homma S, Hara E, Namiki Y, Ohkusa T, Gong J et al. Antigen-specific polyclonal cytotoxic T lymphocytes induced by fusions of dendritic cells and tumor cells. J Biomed Biotechnol 2010; 2010: 752381.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheever MA, Higano CS . PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2001; 17: 3520–3526.

    Article  Google Scholar 

  29. Di Lorenzo G, Buonerba C, Kantoff PW . Immunotherapy for the treatment of prostate cancer. Nat Rev Clin Oncol 2011; 8: 551–561.

    Article  CAS  PubMed  Google Scholar 

  30. Pecher G, Häring H, Kaiser L, Thiel E . Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial. Cancer Immunol, Immunother 2002; 51: 669–673.

    Article  CAS  Google Scholar 

  31. Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR et al. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther 2008; 6: 955–964.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Suso EM, Dueland S, Rasmussen AM, Vetrhus T, Aamdal S, Kvalheim G et al. hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer Immunol, Immunother 2011; 60: 669–673.

    Article  Google Scholar 

  33. Kimura Y, Tsukada J, Tomoda T, Takahashi H, Imai K, Shimamura K et al. Clinical and immunologic evaluation of dendriticcell-based immunotherapy in combination with gemcitabine and/or S-1 in the patients with advanced pancreatic carcinoma. Pancreas 2012; 41: 195–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by a grant from the Supporting Program for Creating University Ventures from the Japanese Science and Technology Agency; a grant from the Research and Development Program for New Bio-industry Initiatives from the Ministry of Agriculture and Forestry and the Fisheries of Japan; and a Grant-in-Aid for High Technology Research (No. 09309011) from the Ministry of Education, Science, Sports, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Takaku.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujihira, A., Suzuki, T., Chang, M. et al. Antitumor effects of baculovirus-infected dendritic cells against human pancreatic carcinoma. Gene Ther 21, 849–854 (2014). https://doi.org/10.1038/gt.2014.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.59

This article is cited by

Search

Quick links