Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

AAVrh.10 immunogenicity in mice and humans. Relevance of antibody cross-reactivity in human gene therapy

Abstract

Simian adeno-associated virus (AAV) serotype rh.10 is a promising gene therapy tool, achieving safe, sustained transgene expression in the nervous system, lung, liver and heart in animal models. To date, preexisting immunity in humans has not been confirmed, though exposure is unexpected. We compared the humoral immune response with serotypes AAVrh.10 and AAV9 in mice, and AAVrh.10, AAV9 and AAV2 in 100 healthy humans. Mice, injected-intravenously, raised significantly more anti-AAV9 than anti-AAVrh.10 IgG (immunoglobulins), and sera demonstrated greater neutralizing capacity, correspondingly. Antibody cross-binding studies in mice showed negligible cross-recognition between AAVrh.10, AAV9 and AAV2. In humans, IgG prevalence against the most common human serotype, AAV2, was 72%; AAV9, 47% and AAVrh.10, a surprising, 59%. Yet, neutralizing-antibody seroprevalences were 71% for AAV2, 18% for AAV9 and 21% for AAVrh.10. Thus, most anti-AAV9 and anti-AAVrh.10 IgG were nonneutralizing. Indeed, sera generally neutralized AAV2 more strongly than AAVrh.10. Further, all samples neutralizing AAVrh.10 or AAV9 also neutralized AAV2, suggesting antibody cross-recognition. This contrasts with the results in mice, and highlights the complexity of tailoring gene therapy to minimize the immune response in humans, when multiple-mixed infections during a lifetime evoke a broad repertoire of preexisting antibodies capable of cross reacting with non-human serotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Mingozzi F, High KA . Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 2013; 122: 23–36.

    Article  CAS  Google Scholar 

  2. Calcedo R, Wilson JM . Humoral immune response to AAV. Front Immunol 2013; 4: 341.

    Article  Google Scholar 

  3. Mays LE, Vandenberghe LH, Xiao R, Bell P, Nam HJ, Agbandje-McKenna M et al. Adeno-associated virus capsid structure drives CD4-dependent CD8+ T cell response to vector encoded proteins. J Immunol 2009; 182: 6051–6060.

    Article  CAS  Google Scholar 

  4. Ciesielska A, Hadaczek P, Mittermeyer G, Zhou S, Wright JF, Bankiewicz KS et al. Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther 2013; 21: 158–166.

    Article  CAS  Google Scholar 

  5. Samaranch L, San Sebastian W, Kells AP, Salegio EA, Heller G, Bringas JR et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther 2014; 22: 329–337.

    Article  CAS  Google Scholar 

  6. Grieger JC, Samulski RJ . Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol 2012; 507: 229–254.

    Article  CAS  Google Scholar 

  7. Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci USA 2003; 100: 6081–6086.

    Article  CAS  Google Scholar 

  8. Sondhi D, Hackett NR, Peterson DA, Stratton J, Baad M, Travis KM et al. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol Ther 2007; 15: 481–491.

    Article  CAS  Google Scholar 

  9. Piguet F, Sondhi D, Piraud M, Fouquet F, Hackett NR, Ahouansou O et al. Correction of brain oligodendrocytes by AAVrh.10 intracerebral gene therapy in metachromatic leukodystrophy mice. Hum Gene Ther 2012; 23: 903–914.

    Article  CAS  Google Scholar 

  10. Homs J, Pages G, Ariza L, Casas C, Chillon M, Navarro X et al. Intrathecal administration of IGF-I by AAVrh10 improves sensory and motor deficits in a mouse model of diabetic neuropathy. Mol Ther Method Clin Dev 2014; 1: 7.

    Article  Google Scholar 

  11. Wang H, Yang B, Qiu L, Yang C, Kramer J, Su Q et al. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet 2014; 23: 668–681.

    Article  CAS  Google Scholar 

  12. Tardieu M, Zerah M, Husson B, de Bournonville S, Deiva K, Adamsbaum C et al. Intracerebral administration of adeno-associated viral vector serotype rh.10 carrying human SGSH and SUMF1 cDNAs in children with mucopolysaccharidosis type IIIA disease: results of a phase I/II trial. Hum Gene Ther 2014; 25: 506–516.

    Article  CAS  Google Scholar 

  13. Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nat Med 2014; 20: 542–547.

    Article  CAS  Google Scholar 

  14. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010; 21: 704–712.

    Article  CAS  Google Scholar 

  15. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM . Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009; 199: 381–390.

    Article  Google Scholar 

  16. Homs J, Ariza L, Pages G, Udina E, Navarro X, Chillon M et al. Schwann cell targeting via intrasciatic injection of AAV8 as gene therapy strategy for peripheral nerve regeneration. Gene Ther 2011; 18: 622–630.

    Article  CAS  Google Scholar 

  17. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  Google Scholar 

  18. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17: 1187–1196.

    Article  CAS  Google Scholar 

  19. Lieberman R, Stiffel C, Asofsky R, Mouton D, Biozzi G, Benacerraf B . Genetic factors controlling anti-sheep erythrocyte antibody response and immunoglobulin synthesis in backcross and F2 progeny of mice genetically selected for ‘high’ or ‘low’ antibody synthesis. J Exp Med 1972; 136: 790–798.

    Article  CAS  Google Scholar 

  20. Chiuchiolo MJ, Kaminsky SM, Sondhi D, Hackett NR, Rosenberg JB, Frenk EZ et al. Intrapleural administration of an AAVrh.10 vector coding for human alpha1-antitrypsin for the treatment of alpha1-antitrypsin deficiency. Human gene therapy. Clin Dev 2013; 24: 161–173.

    CAS  Google Scholar 

  21. Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Jude Samulski R . Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 2013; 20: 450–459.

    Article  CAS  Google Scholar 

  22. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Foust KD, Bringas JR et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther 2012; 23: 382–389.

    Article  CAS  Google Scholar 

  23. Riviere C, Danos O, Douar AM . Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther 2006; 13: 1300–1308.

    Article  CAS  Google Scholar 

  24. Gurda BL, DiMattia MA, Miller EB, Bennett A, McKenna R, Weichert WS et al. Capsid antibodies to different adeno-associated virus serotypes bind common regions. J Virol 2013; 87: 9111–9124.

    Article  CAS  Google Scholar 

  25. Tellez J, Van Vliet K, Tseng YS, Finn JD, Tschernia N, Almeida-Porada G et al. Characterization of naturally-occurring humoral immunity to AAV in sheep. PLoS One 2013; 8: e75142.

    Article  CAS  Google Scholar 

  26. Bartel M, Schaffer D, Buning H . Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity. Front Microbiol 2011; 2: 204.

    Article  Google Scholar 

  27. Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T . Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods 2013; 24: 59–67.

    Article  CAS  Google Scholar 

  28. Calcedo R, Morizono H, Wang L, McCarter R, He J, Jones D et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol 2011; 18: 1586–1588.

    Article  CAS  Google Scholar 

  29. Wang L, Calcedo R, Wang H, Bell P, Grant R, Vandenberghe LH et al. The pleiotropic effects of natural AAV infections on liver-directed gene transfer in macaques. Mol Ther 2010; 18: 126–134.

    Article  CAS  Google Scholar 

  30. Zolotukhin S . Production of recombinant adeno-associated virus vectors. Hum Gene Ther 2005; 16: 551–557.

    Article  CAS  Google Scholar 

  31. Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 1999; 6: 973–985.

    Article  CAS  Google Scholar 

  32. Treleaven CM, Tamsett TJ, Bu J, Fidler JA, Sardi SP, Hurlbut GD et al. Gene transfer to the CNS is efficacious in immune-primed mice harboring physiologically relevant titers of anti-AAV antibodies. Mol Ther 2012; 20: 1713–1723.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Vector Production Unit at CBATEG (Universitat Autònoma de Barcelona) for producing AAV vectors, the LLEB (UAB) for the luminescence measurements, Dr James M. Wilson (University of Pennsylvania) for providing AAV9 and AAVrh.10 RepCap plasmids and Dr Lorena Ariza (CBATEG, UAB) for experimental advice. We are also grateful to the Catalan Banc de Sang i Teixits (BST) for the human samples. GP was recipient of predoctoral fellowship from the Generalitat de Catalunya (2009FI_B00219). This work was supported by the Generalitat de Catalunya (2014 SGR 1354), the Instituto de Salud Carlos III (PS09720) and the Marató TV3 (110432) to AB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Bosch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thwaite, R., Pagès, G., Chillón, M. et al. AAVrh.10 immunogenicity in mice and humans. Relevance of antibody cross-reactivity in human gene therapy. Gene Ther 22, 196–201 (2015). https://doi.org/10.1038/gt.2014.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.103

This article is cited by

Search

Quick links