Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

2-diethylaminoethyl-dextran methyl methacrylate copolymer nonviral vector: still a long way toward the safety of aerosol gene therapy

Abstract

Revealing the lung tumor genome has directed the current treatment strategies toward targeted therapy. First line treatments targeting the genome of lung tumor cells have been approved and are on the market. However, they are limited by the small number of patients with the current investigated genetic mutations. Novel treatment administration modalities have been also investigated in an effort to increase the local drug deposition and disease control. In the current study, we investigated the safety of the new nonviral vector 2-diethylaminoethyl-dextran methyl methacrylate copolymer (DDMC; Ryujyu Science), which belongs to the 2-diethylaminoethyl-dextran family by aerosol administration. Thirty male BALBC mice, 2 month old, were included and divided into three groups. However, pathological findings indicated severe emphysema within three aerosol sessions. In addition, the CytoViva technique was applied for the first time to display the nonviral particles within the pulmonary tissue and emphysema lesions, and a spectral library of the nonviral vector was also established. Although our results in BALBC mice prevented us from further investigation of the DDMC nonviral vector as a vehicle for gene therapy, further investigation in animals with larger airways is warranted to properly evaluate the safety of the vector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Liao BC, Lin CC, Yang JC . First-line management of egfr-mutated advanced lung adenocarcinoma: recent developments. Drugs 2013; 73: 357–369.

    Article  CAS  Google Scholar 

  2. Gridelli C, De Marinis F, Di Maio M, Cortinovis D, Cappuzzo F, Mok T . Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation: Review of the evidence. Lung Cancer 2011; 71: 249–257.

    Article  CAS  Google Scholar 

  3. Li T, Kung HJ, Mack PC, Gandara DR . Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol 2013; 31: 1039–1049.

    Article  CAS  Google Scholar 

  4. Nelson V, Ziehr J, Agulnik M, Johnson M . Afatinib: emerging next-generation tyrosine kinase inhibitor for NSCLC. Onco Targets Ther 2013; 6: 135–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gadgeel SM, Wozniak A . Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer. Clin Lung Cancer 2013; S1525-7304: 00266-5.

    Google Scholar 

  6. Belalcazar A, Azana D, Perez CA, Raez LE, Santos ES . Targeting the Met pathway in lung cancer. Expert Rev Anticancer Ther 2012; 12: 519–528.

    Article  CAS  Google Scholar 

  7. Neal JW, Wakelee HA . Aflibercept in lung cancer. Expert Opin Biol Ther 2013; 13: 115–120.

    Article  CAS  Google Scholar 

  8. Thomas A, Maltzman J, Hassan R . Farletuzumab in lung cancer. Lung Cancer 2013; 80: 15–18.

    Article  Google Scholar 

  9. Lu S, Yu YF . Maintenance therapy for NSCLC: consensus and controversy. Chin J Cancer Res 2011; 23: 254–258.

    Article  CAS  Google Scholar 

  10. Ihbe-Heffinger A, Paessens B, Berger K, Shlaen M, Bernard R, von Schilling C et al. The impact of chemotherapy-induced side effects on medical care usage and cost in German hospital care - an observational analysis on non-small-cell lung cancer patients. Support Care Cancer 2013; 21: 1665–1675.

    Article  Google Scholar 

  11. Zarogoulidis K, Papagiannis A, Ziogas E, Fahantidou E, Dermitzakis G, Gioulekas D et al. Management of chemotherapy-related anaemia with low-dose recombinant human erythropoietin in patients with small cell lung cancer. Eur J Cancer 1997; 33: 2428–2431.

    Article  CAS  Google Scholar 

  12. Zarogoulidis P, Eleftheriadou E, Sapardanis I, Zarogoulidou V, Lithoxopoulou H, Kontakiotis T et al. Feasibility and effectiveness of inhaled carboplatin in NSCLC patients. Invest New Drugs 2012; 30: 1628–1640.

    Article  CAS  Google Scholar 

  13. Celikoglu F, Celikoglu SI, Goldberg EP . Bronchoscopic intratumoral chemotherapy of lung cancer. Lung Cancer 2008; 61: 1–12.

    Article  Google Scholar 

  14. Zarogoulidis P, Chatzaki E, Hohenforst-Schmidt W, Goldberg EP, Galaktidou G, Kontakiotis T et al. Management of malignant pleural effusion by suicide gene therapy in advanced stage lung cancer: a case series and literature review. Cancer Gene Ther 2012; 19: 593–600.

    Article  CAS  Google Scholar 

  15. Zarogoulidis K, Ziogas E, Papagiannis A, Charitopoulos K, Dimitriadis K, Economides D et al. Interferon alpha-2a and combined chemotherapy as first line treatment in SCLC patients: a randomized trial. Lung Cancer 1996; 15: 197–205.

    Article  CAS  Google Scholar 

  16. Porpodis K, Karanikas M, Zarogoulidis P, Kontakiotis T, Mitrakas A, Esebidis A et al. A case of typical pulmonary carcinoid tumor treated with bronchoscopic therapy followed by lobectomy. J Multidiscip Healthc 2012; 5: 47–51.

    PubMed  PubMed Central  Google Scholar 

  17. Zarogoulidis K, Eleftheriadou E, Kontakiotis T, Gerasimou G, Zarogoulidis P, Sapardanis I et al. Long acting somatostatin analogues in combination to antineoplastic agents in the treatment of small cell lung cancer patients. Lung Cancer 2012; 76: 84–88.

    Article  CAS  Google Scholar 

  18. Hecht JR, Farrell JJ, Senzer N, Nemunaitis J, Rosemurgy A, Chung T et al. EUS or percutaneously guided intratumoral TNFerade biologic with 5-fluorouracil and radiotherapy for first-line treatment of locally advanced pancreatic cancer: a phase I/II study. Gastrointest Endosc 2012; 75: 332–338.

    Article  Google Scholar 

  19. Weiss GR, Grosh WW, Chianese-Bullock KA, Zhao Y, Liu H, Slingluff CL Jr. et al. Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin Cancer Res 2011; 17: 7440–7450.

    Article  CAS  Google Scholar 

  20. Horev-Drori G, Cooks T, Bittan H, Lazarov E, Schmidt M, Arazi L et al. Local control of experimental malignant pancreatic tumors by treatment with a combination of chemotherapy and intratumoral 224radium-loaded wires releasing alpha-emitting atoms. Transl Res 2012; 159: 32–41.

    Article  CAS  Google Scholar 

  21. Sterman DH, Recio A, Carroll RG, Gillespie CT, Haas A, Vachani A et al. A phase I clinical trial of single-dose intrapleural IFN-beta gene transfer for malignant pleural mesothelioma and metastatic pleural effusions: high rate of antitumor immune responses. Clin Cancer Res 2007; 13 (15 Pt 1): 4456–4466.

    Article  CAS  Google Scholar 

  22. Zhang J, Wei F, Wang H, Li H, Qiu W, Ren P et al. A novel oncolytic adenovirus expressing Escherichia coli cytosine deaminase exhibits potent antitumor effect on human solid tumors. Cancer Biother Radiopharm 2010; 25: 487–495.

    Article  CAS  Google Scholar 

  23. Gautam A, Densmore CL, Xu B, Waldrep JC . Enhanced gene expression in mouse lung after PEI-DNA aerosol delivery. Mol Ther 2000; 2: 63–70.

    Article  CAS  Google Scholar 

  24. Zou Y, Tornos C, Qiu X, Lia M, Perez-Soler R . p53 aerosol formulation with low toxicity and high efficiency for early lung cancer treatment. Clin Cancer Res 2007; 13: 4900–4908.

    Article  CAS  Google Scholar 

  25. Densmore CL, Kleinerman ES, Gautam A, Jia SF, Xu B, Worth LL et al. Growth suppression of established human osteosarcoma lung metastases in mice by aerosol gene therapy with PEI-p53 complexes. Cancer Gene Ther 2001; 8: 619–627.

    Article  CAS  Google Scholar 

  26. Minai-Tehrani A, Park YC, Hwang SK, Kwon JT, Chang SH, Park SJ et al. Aerosol delivery of kinase-deficient Akt1 attenuates Clara cell injury induced by naphthalene in the lungs of dual luciferase mice. J Vet Sci 2011; 12: 309–317.

    Article  Google Scholar 

  27. Zarogouldis P, Karamanos NK, Porpodis K, Domvri K, Huang H, Hohenforst-Schimdt W et al. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 2012; 13: 10828–10862.

    Article  CAS  Google Scholar 

  28. Zarogoulidis P, Karamanos NK, Porpodis K, Domvri K, Huang H, Hohenforst-Schmidt W et al. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 2012; 13: 17290–17291.

    Article  Google Scholar 

  29. Chirmule N, Hughes JV, Gao GP, Raper SE, Wilson JM . Role of E4 in eliciting CD4 T-cell and B-cell responses to adenovirus vectors delivered to murine and nonhuman primate lungs. J Virol 1998; 72: 6138–6145.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hart SL, Knight AM, Harbottle RP, Mistry A, Hunger HD, Cutler DF et al. Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide. J Biol Chem 1994; 269: 12468–12474.

    CAS  PubMed  Google Scholar 

  31. Montier T, Delepine P, Benvegnu T, Ferrieres V, Miramon ML, Dagorn S et al. Efficient gene transfer into human epithelial cell lines using glycosylated cationic carriers and neutral glycosylated co-lipids. Blood Cells Mol Dis 2004; 32: 271–282.

    Article  CAS  Google Scholar 

  32. Frederiksen KS, Abrahamsen N, Cristiano RJ, Damstrup L, Poulsen HS . Gene delivery by an epidermal growth factor/DNA polyplex to small cell lung cancer cell lines expressing low levels of epidermal growth factor receptor. Cancer Gene Ther 2000; 7: 262–268.

    Article  CAS  Google Scholar 

  33. Kim HW, Park IK, Cho CS, Lee KH, Beck GR Jr., Colburn NH et al. Aerosol delivery of glucosylated polyethylenimine/phosphatase and tensin homologue deleted on chromosome 10 complex suppresses Akt downstream pathways in the lung of K-ras null mice. Cancer Res 2004; 64: 7971–7976.

    Article  CAS  Google Scholar 

  34. Gautam A, Densmore CL, Melton S, Golunski E, Waldrep JC . Aerosol delivery of PEI-p53 complexes inhibits B16-F10 lung metastases through regulation of angiogenesis. Cancer Gene Ther 2002; 9: 28–36.

    Article  CAS  Google Scholar 

  35. Godbey WT, Wu KK, Mikos AG . Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci USA 1999; 96: 5177–5181.

    Article  CAS  Google Scholar 

  36. Davies LA, McLachlan G, Sumner-Jones SG, Ferguson D, Baker A, Tennant P et al. Enhanced lung gene expression after aerosol delivery of concentrated pDNA/PEI complexes. Mol Ther 2008; 16: 1283–1290.

    Article  CAS  Google Scholar 

  37. Jere D, Yoo MK, Arote R, Kim TH, Cho MH, Nah JW et al. Poly (amino ester) composed of poly (ethylene glycol) and aminosilane prepared by combinatorial chemistry as a gene carrier. Pharm Res 2008; 25: 875–885.

    Article  CAS  Google Scholar 

  38. Pfeifer C, Hasenpusch G, Uezguen S, Aneja MK, Reinhardt D, Kirch J et al. Dry powder aerosols of polyethylenimine (PEI)-based gene vectors mediate efficient gene delivery to the lung. J Control Release 2011; 154: 69–76.

    Article  CAS  Google Scholar 

  39. Pitard B, Bello-Roufai M, Lambert O, Richard P, Desigaux L, Fernandes S et al. Negatively charged self-assembling DNA/poloxamine nanospheres for in vivo gene transfer. Nucleic Acids Res 2004; 32: e159.

    Article  Google Scholar 

  40. Kawabata A, Baoum A, Ohta N, Jacquez S, Seo GM, Berkland C et al. Intratracheal administration of a nanoparticle-based therapy with the angiotensin II type 2 receptor gene attenuates lung cancer growth. Cancer Res 2012; 72: 2057–2067.

    Article  CAS  Google Scholar 

  41. Manunta MD, McAnulty RJ, Tagalakis AD, Bottoms SE, Campbell F, Hailes HC et al. Nebulisation of receptor-targeted nanocomplexes for gene delivery to the airway epithelium. PLoS One 2011; 6: e26768.

    Article  CAS  Google Scholar 

  42. Zhong Z, Wan Y, Han J, Shi S, Zhang Z, Sun X . Improvement of adenoviral vector-mediated gene transfer to airway epithelia by folate-modified anionic liposomes. Int J Nanomedicine 2011; 6: 1083–1093.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin H, Kim TH, Hwang SK, Chang SH, Kim HW, Anderson HK et al. Aerosol delivery of urocanic acid-modified chitosan/programmed cell death 4 complex regulated apoptosis, cell cycle, and angiogenesis in lungs of K-ras null mice. Mol Cancer Ther 2006; 5: 1041–1049.

    Article  CAS  Google Scholar 

  44. Mohammadi Z, Dorkoosh FA, Hosseinkhani S, Gilani K, Amini T, Najafabadi AR et al. in vivo transfection study of chitosan-DNA-FAP-B nanoparticles as a new non viral vector for gene delivery to the lung. Int J Pharm 2011; 421: 183–188.

    Article  CAS  Google Scholar 

  45. Schughart K, Rasmussen UB . Solvoplex synthetic vector for intrapulmonary gene delivery. Preparation and use. Methods Mol Med 2002; 69: 83–94.

    CAS  PubMed  Google Scholar 

  46. Delepine P, Guillaume C, Floch V, Loisel S, Yaouanc J, Clement J et al. Cationic phosphonolipids as nonviral vectors: in vitro and in vivo applications. J Pharm Sci 2000; 89: 629–638.

    Article  CAS  Google Scholar 

  47. Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH et al. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials 2007; 28: 735–744.

    Article  CAS  Google Scholar 

  48. Gautam A, Densmore CL, Golunski E, Xu B, Waldrep JC . Transgene expression in mouse airway epithelium by aerosol gene therapy with PEI-DNA complexes. Mol Ther 2001; 3: 551–556.

    Article  CAS  Google Scholar 

  49. Rudolph C, Muller RH, Rosenecker J . Jet nebulization of PEI/DNA polyplexes: physical stability and in vitro gene delivery efficiency. J Gene Med 2002; 4: 66–74.

    Article  CAS  Google Scholar 

  50. Onishi Y, Eshita Y, Murashita A, Mizuno M, Yoshida J . Characteristics of DEAE-dextran-MMA graft copolymer as a nonviral gene carrier. Nanomedicine 2007; 3: 184–191.

    Article  CAS  Google Scholar 

  51. Eshita Y, Higashihara J, Onishi M, Mizuno M, Yoshida J, Takasaki T et al. Mechanism of introduction of exogenous genes into cultured cells using DEAE-dextran-MMA graft copolymer as non-viral gene carrier. Molecules 2009; 14: 2669–2683.

    Article  CAS  Google Scholar 

  52. Onishi Y, Eshita Y, Murashita A, Mizuno M, Yoshida J . A novel vector of 2-diethylaminoethyl(DEAE)-dextran-mma graft copolymer for non-viral gene deliver. J Gene Med 2008; 10: 472.

    Google Scholar 

  53. Onishi Y, Kikuchi Y . Study of the complex between RNA and DEAE-dextran. Kobunshi Ronbunshu 2004; 61: 139–143.

    Article  CAS  Google Scholar 

  54. Onishi Y, Maruno S, Kamiya S, Hokkoku S, Hasegawa M . Preparation and characteristics of dextran-methyl methacrylate graft copolymer. Polymer 1978; 19: 1325–1328.

    Article  CAS  Google Scholar 

  55. Rau JL . Design principles of liquid nebulization devices currently in use. Respir Care 2002; 47: 1257–1275.

    PubMed  Google Scholar 

  56. Catanese DJ Jr., Fogg JM, Schrock DE 2nd, Gilbert BE, Zechiedrich L . Supercoiled Minivector DNA resists shear forces associated with gene therapy delivery. Gene Ther 2012; 19: 94–100.

    Article  CAS  Google Scholar 

  57. Tolmachov OE . Self-entanglement of long linear DNA vectors using transient non-B-DNA attachment points: a new concept for improvement of non-viral therapeutic gene delivery. Med Hypotheses 2012; 78: 632–635.

    Article  CAS  Google Scholar 

  58. Cipolla DC, Gonda I, Shak S, Kovesdi I, Crystal R, Sweeney TD . Coarse spray delivery to a localized region of the pulmonary airways for gene therapy. Hum Gene Ther 2000; 11: 361–371.

    Article  CAS  Google Scholar 

  59. Beck SE, Laube BL, Barberena CI, Fischer AC, Adams RJ, Chesnut K et al. Deposition and expression of aerosolized rAAV vectors in the lungs of Rhesus macaques. Mol Ther 2002; 6: 546–554.

    Article  CAS  Google Scholar 

  60. Hasenpusch G, Pfeifer C, Aneja MK, Wagner K, Reinhardt D, Gilon M et al. Aerosolized BC-819 inhibits primary but not secondary lung cancer growth. PLoS One 2011; 6: e20760.

    Article  CAS  Google Scholar 

  61. Colonna C, Conti B, Genta I, Alpar OH . Non-viral dried powders for respiratory gene delivery prepared by cationic and chitosan loaded liposomes. Int J Pharm 2008; 364: 108–118.

    Article  CAS  Google Scholar 

  62. Zarogoulidis P, Papanas N, Kouliatsis G, Spyratos D, Zarogoulidis K, Maltezos E . Inhaled insulin: too soon to be forgotten? J Aerosol Med Pulm Drug Deliv 2011; 24: 213–223.

    Article  CAS  Google Scholar 

  63. Xu CX, Jere D, Jin H, Chang SH, Chung YS, Shin JY et al. Poly(ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am J Respir Crit Care Med 2008; 178: 60–73.

    Article  CAS  Google Scholar 

  64. Tehrani AM, Hwang SK, Kim TH, Cho CS, Hua J, Nah WS et al. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice. Gene Ther 2007; 14: 451–458.

    Article  CAS  Google Scholar 

  65. Kootstra NA, Verma IM . Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 2003; 43: 413–439.

    Article  CAS  Google Scholar 

  66. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301.

    Article  CAS  Google Scholar 

  67. Thomas M, Ge Q, Lu JJ, Chen J, Klibanov AM . Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm Res 2005; 22: 373–380.

    Article  CAS  Google Scholar 

  68. Anchordoquy TJ, Koe GS . Physical stability of nonviral plasmid-based therapeutics. J Pharm Sci 2000; 89: 289–296.

    Article  CAS  Google Scholar 

  69. Mahato RI, Rolland A, Tomlinson E . Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm Res 1997; 14: 853–859.

    Article  CAS  Google Scholar 

  70. Cherng JY, van de Wetering P, Talsma H, Crommelin DJ, Hennink WE . Freeze-drying of poly((2-dimethylamino)ethyl methacrylate)-based gene delivery systems. Pharm Res 1997; 14: 1838–1841.

    Article  CAS  Google Scholar 

  71. Bandyopadhyay P, Ma X, Linehan-Stieers C, Kren BT, Steer CJ . Nucleotide exchange in genomic DNA of rat hepatocytes using RNA/DNA oligonucleotides. Targeted delivery of liposomes and polyethyleneimine to the asialoglycoprotein receptor. J Biol Chem 1999; 274: 10163–10172.

    Article  CAS  Google Scholar 

  72. McLachlan G, Davidson H, Holder E, Davies LA, Pringle IA, Sumner-Jones SG et al. Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther 2011; 18: 996–1005.

    Article  CAS  Google Scholar 

  73. Koehler DR, Frndova H, Leung K, Louca E, Palmer D, Ng P et al. Aerosol delivery of an enhanced helper-dependent adenovirus formulation to rabbit lung using an intratracheal catheter. J Gene Med 2005; 7: 1409–1420.

    Article  CAS  Google Scholar 

  74. Labiris NR, Dolovich MB . Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 2003; 56: 588–599.

    Article  CAS  Google Scholar 

  75. Labiris NR, Dolovich MB . Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 2003; 56: 600–612.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Director of the experimental animal laboratory of ‘Theiagenio’ Anticancer Hospital; Frideriki Patakiouta for her support by using the installations of the laboratory. We also thank the Associate Professor of the Technical Institute of Aristotle University of Thessaloniki; Dr Paul Zarogoulidis thanks the Assistant Professor Chris Ritzoulis, Technical Institute of Food Administration, Aristotle University of Thessaloniki, Greece for his technical assistance in measuring the aerosol droplets with the Mastesizer 2000 laser scattering apparatus (Malvern). In addition, he thanks Jane F Century Chief Operating Officer, Penn-Century, Inc. http://www.penncentury.com for providing her technical expertise and material in order for this effort to be completed and presented. Finally, we thank the veterinarians; Kyriaki Papadimitriou and Froso Papagianni for the supervision of the animals throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Zarogoulidis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarogoulidis, P., Hohenforst-Schmidt, W., Darwiche, K. et al. 2-diethylaminoethyl-dextran methyl methacrylate copolymer nonviral vector: still a long way toward the safety of aerosol gene therapy. Gene Ther 20, 1022–1028 (2013). https://doi.org/10.1038/gt.2013.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.27

Keywords

This article is cited by

Search

Quick links