Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency

Abstract

Immunotherapy that is based on adoptive transfer of T lymphocytes, which are genetically modified to express chimeric antigen receptors (CARs) that recognize tumor-associated antigens, has been demonstrated to be an efficient cancer therapy. Vascular endothelial growth factor receptor-1 (VEGFR-1), a vital molecule involved in tumor growth and angiogenesis, has not been targeted by CAR-modified T lymphocytes. In this study, we generated CAR-modified T lymphocytes with human VEGFR-1 specificity (V-1 CAR) by electroporation. V-1 CAR-modified T lymphocytes were demonstrated to elicit lytic cytotoxicity to target cells in a VEGFR-1-dependent manner. The adoptive transfer of V-1 CAR T lymphocytes delayed tumor growth and formation and inhibited pulmonary metastasis in xenograft models and such efficacies were enhanced by cotransfer of T lymphocytes that expressed interleukin-15 (IL-15). Moreover, V-1 CAR-modified T lymphocytes lysed primary endothelial cells and impaired tube formation, in vitro. These data demonstrated the antitumor and anti-angiogenesis ability of V-1 CAR-modified T lymphocytes. Our study provides the rationale for the clinical translation of CAR-modified T lymphocytes with VEGFR-1 specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME . Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8: 299–308.

    Article  CAS  Google Scholar 

  2. Sadelain M, Brentjens R, Riviere I . The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21: 215–223.

    Article  CAS  Google Scholar 

  3. Till BG, Jensen MC, Wang JJ, Chen EY, Wood BL, Greisman HA et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008; 112: 2261–2271.

    Article  CAS  Google Scholar 

  4. Haynes NM, Trapani JA, Teng MWL, Jackson JT, Cerruti L, Jane SM et al. Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation. Journal of Immunology 2002; 169: 5780–5786.

    Article  CAS  Google Scholar 

  5. Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 2009; 183: 5563–5574.

    Article  CAS  Google Scholar 

  6. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T Cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73–95ra73.

    Article  CAS  Google Scholar 

  7. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  Google Scholar 

  8. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010; 116: 4099–4102.

    Article  CAS  Google Scholar 

  9. Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest 2010; 120: 3953–3968.

    Article  CAS  Google Scholar 

  10. Shibuya M . Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 2006; 9: 225–230.

    Article  CAS  Google Scholar 

  11. Fong GH, Rossant J, Gertsenstein M, Breitman ML . Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66–70.

    Article  CAS  Google Scholar 

  12. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M . Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 1998; 95: 9349–9354.

    Article  CAS  Google Scholar 

  13. Wu Y, Zhong Z, Huber J, Bassi R, Finnerty B, Corcoran E et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin Cancer Res 2006; 12: 6573–6584.

    Article  CAS  Google Scholar 

  14. Decaussin M, Sartelet H, Robert C, Moro D, Claraz C, Brambilla C et al. Expression of vascular endothelial growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 and VEGF-R2-Flk1/KDR) in non-small cell lung carcinomas (NSCLCs): correlation with angiogenesis and survival. J Pathol 1999; 188: 369–377.

    Article  CAS  Google Scholar 

  15. El-Obeid A, Sunnuqrut N, Hussain A, Al-Hussein K, Gutierrez MI, Bhatia K . Immature B cell malignancies synthesize VEGF, VEGFR-1 (Flt-1) and VEGFR-2 (KDR). Leuk Res 2004; 28: 133–137.

    Article  CAS  Google Scholar 

  16. Morelli MP, Brown AM, Pitts TM, Tentler JJ, Ciardiello F, Ryan A et al. Targeting vascular endothelial growth factor receptor-1 and −3 with cediranib (AZD2171): effects on migration and invasion of gastrointestinal cancer cell lines. Mol Cancer Ther 2009; 8: 2546–2558.

    Article  CAS  Google Scholar 

  17. Yao J, Wu X, Zhuang G, Kasman IM, Vogt T, Phan V et al. Expression of a functional VEGFR-1 in tumor cells is a major determinant of anti-PlGF antibodies efficacy. Proc Natl Acad Sci USA 2011; 108: 11590–11595.

    Article  CAS  Google Scholar 

  18. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002; 2: 289–300.

    Article  CAS  Google Scholar 

  19. Schwartz JD, Rowinsky EK, Youssoufian H, Pytowski B, Wu Y . Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (Human antibody targeting vascular endothelial growth factor receptor-1). Cancer 2010; 116 (4 Suppl): 1027–1032.

    Article  CAS  Google Scholar 

  20. Haynes NM, Snook MB, Trapani JA, Cerruti L, Jane SM, Smyth MJ et al. Redirecting mouse CTL against colon carcinoma: Superior signaling efficacy of single-chain variable domain chimeras containing TCR-zeta vs Fc epsilon RI-gamma. J Immunol 2001; 166: 182–187.

    Article  CAS  Google Scholar 

  21. Yoon SH, Lee JM, Cho HI, Kim EK, Kim HS, Park MY et al. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther 2009; 16: 489–497.

    Article  CAS  Google Scholar 

  22. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 2010; 70: 9053–9061.

    Article  CAS  Google Scholar 

  23. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES et al. New non-viral method for gene transfer into primary cells. Methods 2004; 33: 151–163.

    Article  CAS  Google Scholar 

  24. Martinet W, Schrijvers DM, Kockx MM . Nucleofection as an efficient nonviral transfection method for human monocytic cells. Biotechnol Lett 2003; 25: 1025–1029.

    Article  CAS  Google Scholar 

  25. Budagian V, Bulanova E, Paus R, Bulfone-Paus S . IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev 2006; 17: 259–280.

    Article  CAS  Google Scholar 

  26. Hsu C, Hughes MS, Zheng Z, Bray RB, Rosenberg SA, Morgan RA . Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 2005; 175: 7226–7234.

    Article  CAS  Google Scholar 

  27. Markley JC, Sadelain M . IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood 2010; 115: 3508–3519.

    Article  CAS  Google Scholar 

  28. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005; 202: 907–912.

    Article  CAS  Google Scholar 

  29. Teague RM, Sather BD, Sacks JA, Huang MZ, Dossett ML, Morimoto J et al. Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med 2006; 12: 335–341.

    Article  CAS  Google Scholar 

  30. Schluns KS, Lefrançois L . Cytokine control of memory T-cell development and survival. Nat Rev Immunol 2003; 3: 269–279.

    Article  CAS  Google Scholar 

  31. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  CAS  Google Scholar 

  32. Sitohy B, Nagy JA, Dvorak HF . Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 2012; 72: 1909–1914.

    Article  CAS  Google Scholar 

  33. Casanovas O, Hicklin DJ, Bergers G, Hanahan D . Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8: 299–309.

    Article  CAS  Google Scholar 

  34. Grepin R, Pages G . Molecular mechanisms of resistance to tumour anti-angiogenic strategies. J Oncol 2010; 2010: 835680.

    Article  Google Scholar 

  35. Ellis LM, Hicklin DJ . Pathways mediating resistance to vascular endothelial growth factor-targeted therapy. Clin Cancer Res 2008; 14: 6371–6375.

    Article  CAS  Google Scholar 

  36. Kadenhe-Chiweshe A, Papa J, McCrudden KW, Frischer J, Bae JO, Huang J et al. Sustained VEGF blockade results in microenvironmental sequestration of VEGF by tumors and persistent VEGF receptor-2 activation. Mol Cancer Res 2008; 6: 1–9.

    Article  CAS  Google Scholar 

  37. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15: 220–231.

    Article  CAS  Google Scholar 

  38. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS . Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15: 232–239.

    Article  CAS  Google Scholar 

  39. Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007; 18: 712–725.

    Article  CAS  Google Scholar 

  40. Hombach AA, Abken H . Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28-OX40 signalling. Int J Cancer 2011; 129: 2935–2944.

    Article  CAS  Google Scholar 

  41. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK . A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005; 12: 933–941.

    Article  CAS  Google Scholar 

  42. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA . Case Report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18: 843–851.

    Article  CAS  Google Scholar 

  43. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M . Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18: 666–668.

    Article  CAS  Google Scholar 

  44. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  Google Scholar 

  45. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26: 5233–5239.

    Article  CAS  Google Scholar 

  46. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  47. Singh H, Figliola MJ, Dawson MJ, Huls H, Olivares S, Switzer K et al. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res 2011; 71: 3516–3527.

    Article  CAS  Google Scholar 

  48. Pan Y, Xu Y, Feng S, Luo S, Zheng R, Yang J et al. SKLB1206, a novel orally available multikinase inhibitor targeting EGFR activating and T790M mutants, ErbB2, ErbB4, and VEGFR2, displays potent antitumor activity both in vitro and in vivo. Mol Cancer Ther 2012; 11: 952–962.

    Article  CAS  Google Scholar 

  49. Serrano LM, Pfeiffer T, Olivares S, Numbenjapon T, Bennitt J, Kim D et al. Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for post-transplantation adoptive immunotherapy. Blood 2006; 107: 2643–2652.

    Article  CAS  Google Scholar 

  50. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 2011; 475: 226–230.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Li Deng in Tissue engineering Institute, West China Medical School, West China Hospital and Professor Hua-Shun Li, the Second affiliated Hospital, Sichuan University, for the technical supports. This work is supported by National 973 Basic Research Program of China (Grants 2006CB504303 and 2010CB529900), the National 863 High Tech Foundation (Grants 2007AA021205 and 2006AA03Z356), the National Natural Science Foundation of China (Grants 81201789/H1611), the National Major Project (2009ZX09503-005), the Postdoctoral Foundation of China (Grants 2011M501306), and the Youth Research Foundation of Sichuan University (Grants 2082604154099).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y-S Wang or Y-Q Wei.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Ma, Y., Li, J. et al. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther 20, 970–978 (2013). https://doi.org/10.1038/gt.2013.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.19

Keywords

This article is cited by

Search

Quick links