Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Engineering a serum-resistant and thermostable vesicular stomatitis virus G glycoprotein for pseudotyping retroviral and lentiviral vectors

Abstract

Vesicular stomatitis virus G glycoprotein (VSV-G) is the most widely used envelope protein for retroviral and lentiviral vector pseudotyping; however, serum inactivation of VSV-G pseudotyped vectors is a significant challenge for in vivo gene delivery. To address this problem, we conducted directed evolution of VSV-G to increase its resistance to human serum neutralization. After six selection cycles, numerous common mutations were present. On the basis of their location within VSV-G, we analyzed whether substitutions in several surface exposed residues could endow viral vectors with higher resistance to serum. S162T, T230N and T368A mutations enhanced serum resistance, and additionally K66T, T368A and E380K substitutions increased the thermostability of VSV-G pseudotyped retroviral vectors, an advantageous byproduct of the selection strategy. Analysis of a number of combined mutants revealed that VSV-G harboring T230N+T368A or K66T+S162T+T230N+T368A mutations exhibited both higher in vitro resistance to human serum and higher thermostability, as well as enhanced resistance to rabbit and mouse serum. Finally, lentiviral vectors pseudotyped with these variants were more resistant to human serum in a murine model. These serum-resistant and thermostable VSV-G variants may aid the application of retroviral and lentiviral vectors to gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R et al. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323: 570–578.

    Article  CAS  PubMed  Google Scholar 

  2. Edelstein ML, Abedi MR, Wixon J . Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 2007; 9: 833–842.

    Article  PubMed  Google Scholar 

  3. Schaffer DV, Koerber JT, Lim KI . Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng 2008; 10: 169–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sheridan C . Gene therapy finds its niche. Nat Biotechnol 2011; 29: 121–128.

    Article  CAS  PubMed  Google Scholar 

  5. Braun S . Muscular gene transfer using nonviral vectors. Curr Gene Ther 2008; 8: 391–405.

    Article  CAS  PubMed  Google Scholar 

  6. Nishikawa M, Takakura Y, Hashida M . Pharmacokinetic considerations regarding non-viral cancer gene therapy. Cancer Sci 2008; 99: 856–862.

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt-Wolf GD, Schmidt-Wolf IG . Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med 2003; 9: 67–72.

    Article  CAS  PubMed  Google Scholar 

  8. Follenzi A, Santambrogio L, Annoni A . Immune responses to lentiviral vectors. Curr Gene Ther 2007; 7: 306–315.

    Article  CAS  PubMed  Google Scholar 

  9. Nair V . Retrovirus-induced oncogenesis and safety of retroviral vectors. Curr Opin Mol Ther 2008; 10: 431–438.

    CAS  PubMed  Google Scholar 

  10. Cronin J, Zhang XY, Reiser J . Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 2005; 5: 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morizono K, Ku A, Xie Y, Harui A, Kung SK, Roth MD et al. Redirecting lentiviral vectors pseudotyped with Sindbis virus-derived envelope proteins to DC-SIGN by modification of N-linked glycans of envelope proteins. J Virol 2010; 84: 6923–6934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miletic H, Bruns M, Tsiakas K, Vogt B, Rezai R, Baum C et al. Retroviral vectors pseudotyped with lymphocytic choriomeningitis virus. J Virol 1999; 73: 6114–6116.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sinn PL, Burnight ER, Shen H, Fan H, McCray PB . Inclusion of Jaagsiekte sheep retrovirus proviral elements markedly increases lentivirus vector pseudotyping efficiency. Mol Ther 2005; 11: 460–469.

    Article  CAS  PubMed  Google Scholar 

  14. Funke S, Schneider IC, Glaser S, Mühlebach MD, Moritz T, Cattaneo R et al. Pseudotyping lentiviral vectors with the wild-type measles virus glycoproteins improves titer and selectivity. Gene Ther 2009; 16: 700–705.

    Article  CAS  PubMed  Google Scholar 

  15. Sakuma T, De Ravin SS, Tonne JM, Thatava T, Ohmine S, Takeuchi Y et al. Characterization of retroviral and lentiviral vectors pseudotyped with xenotropic murine leukemia virus-related virus envelope glycoprotein. Hum Gene Ther 2010; 21: 1665–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK . Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 1993; 90: 8033–8037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yee JK, Friedmann T, Burns JC . Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 1994; 43: 99–112.

    Article  CAS  PubMed  Google Scholar 

  18. Yang YP, Vanin EF, Whitt MA, Fornerod M, Zwart R, Schneiderman RD et al. Inducible, high-level production of infectious murine leukemia retroviral vector particles pseudotyped with vesicular stomatitis virus G envelope protein. Hum Gene Ther 1995; 6: 1203–1213.

    Article  CAS  PubMed  Google Scholar 

  19. Ory DS, Neugeboren BA, Mulligan RC . A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci USA 1996; 93: 11400–11406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DePolo NJ, Reed JD, Sheridan PL, Townsend K, Sauter SL, Jolly DJ et al. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2000; 2: 218–222.

    Article  CAS  PubMed  Google Scholar 

  21. Gasque P . Complement: a unique innate immune sensor for danger signals. Mol Immunol 2004; 41: 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  22. Hofmann C, Strauss M . Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther 1998; 5: 531–536.

    Article  CAS  PubMed  Google Scholar 

  23. Hoare J, Waddington S, Thomas HC, Coutelle C, McGarvey MJ . Complement inhibition rescued mice allowing observation of transgene expression following intraportal delivery of baculovirus in mice. J Gene Med 2005; 7: 325–333.

    Article  CAS  PubMed  Google Scholar 

  24. Schauber-Plewa C, Simmons A, Tuerk MJ, Pacheco CD, Veres G . Complement regulatory proteins are incorporated into lentiviral vectors and protect particles against complement inactivation. Gene Ther 2005; 12: 238–245.

    Article  CAS  PubMed  Google Scholar 

  25. Magre S, Takeuchi Y, Langford G, Richards A, Patience C, Weiss R . Reduced sensitivity to human serum inactivation of enveloped viruses produced by pig cells transgenic for human CD55 or deficient for the galactosyl-alpha(1–3) galactosyl epitope. J Virol 2004; 78: 5812–5819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tani H, Limn CK, Yap CC, Onishi M, Nozaki M, Nishimune Y et al. In vitro and in vivo gene delivery by recombinant baculoviruses. J Virol 2003; 77: 9799–9808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spitzer D, Hauser H, Wirth D . Complement-protected amphotropic retroviruses from murine packaging cells. Hum Gene Ther 1999; 10: 1893–1902.

    Article  CAS  PubMed  Google Scholar 

  28. Croyle MA, Callahan SM, Auricchio A, Schumer G, Linse KD, Wilson JM et al. PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector prevents inactivation in serum. J Virol 2004; 78: 912–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim YK, Choi JY, Jiang HL, Arote R, Jere D, Cho MH et al. Hybrid of baculovirus and galactosylated PEI for efficient gene carrier. Virology 2009; 387: 89–97.

    Article  CAS  PubMed  Google Scholar 

  30. Sandrin V, Boson B, Salmon P, Gay W, Nègre D, Le Grand R et al. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002; 100: 823–832.

    Article  CAS  PubMed  Google Scholar 

  31. Trobridge GD, Wu RA, Hansen M, Ironside C, Watts KL, Olsen P et al. Cocal-pseudotyped lentiviral vectors resist inactivation by human serum and efficiently transduce primate hematopoietic repopulating cells. Mol Ther 2010; 18: 725–733.

    Article  CAS  PubMed  Google Scholar 

  32. Gatlin J, Melkus MW, Padgett A, Petroll WM, Cavanagh HD, Garcia JV et al. In vivo fluorescent labeling of corneal wound healing fibroblasts. Exp Eye Res 2003; 76: 361–371.

    Article  CAS  PubMed  Google Scholar 

  33. Ting-De Ravin SS, Kennedy DR, Naumann N, Kennedy JS, Choi U, Hartnett BJ et al. Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy. Blood 2006; 107: 3091–3097.

    Article  PubMed  Google Scholar 

  34. Powell SK, Kaloss MA, Pinkstaff A, McKee R, Burimski I, Pensiero M et al. Breeding of retroviruses by DNA shuffling for improved stability and processing yields. Nat Biotechnol 2000; 18: 1279–1282.

    Article  CAS  PubMed  Google Scholar 

  35. Vu HN, Ramsey JD, Pack DW . Engineering of a stable retroviral gene delivery vector by directed evolution. Mol Ther 2008; 16: 308–314.

    Article  CAS  PubMed  Google Scholar 

  36. Merten CA, Stitz J, Braun G, Poeschla EM, Cichutek K, Buchholz CJ . Directed evolution of retrovirus envelope protein cytoplasmic tails guided by functional incorporation into lentivirus particles. J Virol 2005; 79: 834–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Excoffon KJ, Koerber JT, Dickey DD, Murtha M, Keshavjee S, Kaspar BK et al. Directed evolution of adeno-associated virus to an infectious respiratory virus. Proc Natl Acad Sci USA 2009; 106: 3865–3870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV . Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 2006; 24: 198–204.

    Article  CAS  PubMed  Google Scholar 

  39. Lim KI, Klimczak R, Yu JH, Schaffer DV . Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc Natl Acad Sci USA 2011; 107: 12475–12480.

    Article  Google Scholar 

  40. Roche S, Rey FA, Gaudin Y, Bressanelli S . Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 2007; 315: 843–848.

    Article  CAS  PubMed  Google Scholar 

  41. Kuchner O, Arnold FH . Directed evolution of enzyme catalysts. Trends Biotechnol 1997; 15: 523–530.

    Article  CAS  PubMed  Google Scholar 

  42. Hamamatsu N, Aita T, Nomiya Y, Uchiyama H, Nakajima M, Husimi Y et al. Biased mutation-assembling: an efficient method for rapid directed evolution through simultaneous mutation accumulation. Protein Eng Des Sel 2005; 18: 265–271.

    Article  CAS  PubMed  Google Scholar 

  43. Pensiero MN, Wysocki CA, Nader K, Kikuchi GE . Development of amphotropic murine retrovirus vectors resistant to inactivation by human serum. Hum Gene Ther 1996; 7: 1095–1101.

    Article  CAS  PubMed  Google Scholar 

  44. Kaname Y, Tani H, Kataoka C, Shiokawa M, Taguwa S, Abe T et al. Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64. J Virol 2010; 84: 3210–3219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan D, Gunther R, Duan W, Wendell S, Kaemmerer W, Kafri T et al. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol Ther 2002; 6: 19–29.

    Article  CAS  PubMed  Google Scholar 

  46. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326: 818–823.

    Article  CAS  PubMed  Google Scholar 

  47. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2010; 2: 36–43.

    Article  Google Scholar 

  48. Maersch S, Huber A, Buning H, Hallek M, Perabo L . Optimization of stealth adeno-associated virus vectors by randomization of immunogenic epitopes. Virology 2010; 397: 167–175.

    Article  CAS  PubMed  Google Scholar 

  49. Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 2008; 82: 5887–5911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vandepop SB, Lefrancois L, Holland JJ . Sequences of the major antibody epitopes of the Indiana serotype Vesicular stomatitis virus. Virology 1986; 148: 312–325.

    Article  Google Scholar 

  51. Paul RW, Morris D, Hess BW, Dunn J, Overell RW . Increased viral titer through concentration of viral harvests from retroviral packaging lines. Hum Gene Ther 1993; 4: 609–615.

    Article  CAS  PubMed  Google Scholar 

  52. Andreadis ST, Brott D, Fuller AO, Palsson BO . Moloney murine leukemia virus-derived retroviral vectors decay intracellularly with a half-life in the range of 5.5 to 7.5 hours. J Virol 1997; 71: 7541–7548.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yano JK, Poulos TL . New understandings of thermostable and peizostable enzymes. Curr Opin Biotechnol 2003; 14: 360–365.

    Article  CAS  PubMed  Google Scholar 

  54. Green BJ, Lee CS, Rasko JEJ . Biodistribution of the RD114/mammalian type D retrovirus receptor, RDR. J Gene Med 2004; 6: 249–259.

    Article  CAS  PubMed  Google Scholar 

  55. Jimenez DF, Lee CI, O’Shea CE, Kohn DB, Tarantal AF . HIV-1-derived lentiviral vectors and fetal route of administration on transgene biodistribution and expression in rhesus monkeys. Gene Ther 2005; 12: 821–830.

    Article  CAS  PubMed  Google Scholar 

  56. Yu JH, Schaffer DV . Selection of novel vesicular stomatitis virus glycoprotein variants from a peptide insertion library for enhanced purification of retroviral and lentiviral vectors. J Virol 2006; 80: 3285–3292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang L, Yang H, Rideout K, Cho T, Joo KI, Ziegler L et al. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol 2008; 26: 326–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friedman HM, Wang L, Fishman NO, Lambris JD, Eisenberg RJ, Cohen GH et al. Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol 1996; 70: 4253–4260.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kweon CH, Kwon BJ, Kim IJ, Lee SY, Ko YJ . Development of monoclonal antibody-linked ELISA for sero-diagnosis of vesicular stomatitis virus (VSV-IN) using baculovirus expressed glycoprotein. J Virol Methods 2005; 130: 7–14.

    Article  CAS  PubMed  Google Scholar 

  60. Koerber JT, Jang JH, Schaffer DV 2008 DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol Ther 16: 1703–1709.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge a research grant from Virxsys Corporation as well as NIH R01 GM07305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D V Schaffer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, BY., Schaffer, D. Engineering a serum-resistant and thermostable vesicular stomatitis virus G glycoprotein for pseudotyping retroviral and lentiviral vectors. Gene Ther 20, 807–815 (2013). https://doi.org/10.1038/gt.2013.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.1

Keywords

This article is cited by

Search

Quick links