Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A myeloid cell-binding adenovirus efficiently targets gene transfer to the lung and escapes liver tropism

Abstract

Specific and efficient gene delivery to the lung has been hampered by liver sequestration of adenovirus serotype 5 (Ad5) vectors. The complexity of Ad5 liver tropism has largely been unraveled, permitting improved efficacy of Ad5 gene delivery. However, Kupffer cell (KC) scavenging and elimination of Ad5 still represent major obstacles to lung gene delivery strategies. KC uptake substantially reduces bioavailability of Ad5 for target tissues and compensatory dose escalation leads to acute hepatotoxicity and a potent innate immune response. Here, we report a novel lung-targeting strategy through redirection of Ad5 binding to the concentrated leukocyte pool within the pulmonary microvasculature. We demonstrate that this leukocyte-binding approach retargets Ad5 specifically to lung endothelial cells and prevents KC uptake and hepatocyte transduction, resulting in 165 000-fold enhanced lung targeting, compared with Ad5. In addition, myeloid cell-specific binding is preserved in single-cell lung suspensions and only Ad.MBP-coated myeloid cells achieved efficient endothelial cell transduction ex vivo. These findings demonstrate that KC sequestration of Ad5 can be prevented through more efficient uptake of virions in target tissues and suggest that endothelial transduction is achieved by leukocyte-mediated ‘hand-off’ of Ad.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80: 148–158.

    Article  CAS  PubMed  Google Scholar 

  2. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2010; 363: 355–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL et al. Vision 1 year after gene therapy for Leber’s congenital amaurosis. N Engl J Med 2009; 361: 725–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parker AL, Nicklin SA, Baker AH . Interactions of adenovirus vectors with blood: implications for intravascular gene therapy applications. Curr Opin Mol Ther 2008; 10: 439–448.

    CAS  PubMed  Google Scholar 

  5. Descamps D, Benihoud K . Two key challenges for effective adenovirus-mediated liver gene therapy: innate immune responses and hepatocyte-specific transduction. Curr Gene Ther 2009; 9: 115–127.

    Article  CAS  PubMed  Google Scholar 

  6. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 1997; 71: 8798–8807.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001; 3: 28–35.

    Article  CAS  PubMed  Google Scholar 

  8. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Therapy 1997; 8: 37–44.

    Article  CAS  Google Scholar 

  9. Xu Z, Tian J, Smith JS, Byrnes AP . Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol 2008; 82: 11705–11713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma A, Bangari DS, Tandon M, Hogenesch H, Mittal SK . Evaluation of innate immunity and vector toxicity following inoculation of bovine, porcine or human adenoviral vectors in a mouse model. Virus Res 2010; 153: 134–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Chirmule N, Gao GP, Qian R, Croyle M, Joshi B et al. Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther 2001; 3 (Part 1): 697–707.

    Article  CAS  PubMed  Google Scholar 

  12. Doronin K, Flatt JW, Di Paolo NC, Khare R, Kalyuzhniy O, Acchione M et al. Coagulation factor X activates innate immunity to human species C adenovirus. Science 2012, (e-pub ahead of print 27 September 2012; doi:10.1126/science.1226625).

  13. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A . Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 2005; 79: 7478–7491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parker AL, Waddington SN, Nicol CG, Shayakhmetov DM, Buckley SM, Denby L et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 2006; 108: 2554–2561.

    Article  CAS  PubMed  Google Scholar 

  15. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397–409.

    Article  CAS  PubMed  Google Scholar 

  16. Di Paolo NC, van Rooijen N, Shayakhmetov DM . Redundant and synergistic mechanisms control the sequestration of blood-borne adenovirus in the liver. Mol Ther 2009; 17: 675–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ganesan LP, Mohanty S, Kim J, Clark KR, Robinson JM, Anderson CL . Rapid and efficient clearance of blood-borne virus by liver sinusoidal endothelium. PLoS Pathog 2011; 7: e1002281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Paolo NC, Shayakhmetov DM . Adenovirus de-targeting from the liver. Curr Opin Mol Ther 2009; 11: 523–531.

    CAS  PubMed  Google Scholar 

  19. Krasnykh VN, Douglas JT, van Beusechem VW . Genetic targeting of adenoviral vectors. Mol Ther 2000; 1 (Part 1): 391–405.

    Article  CAS  PubMed  Google Scholar 

  20. Waehler R, Russell SJ, Curiel DT . Engineering targeted viral vectors for gene therapy. Nat Rev Genet 2007; 8: 573–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma A, Li X, Bangari DS, Mittal SK . Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143: 184–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pickles RJ . Physical and biological barriers to viral vector-mediated delivery of genes to the airway epithelium. Proc Am Thorac Soc 2004; 1: 302–308.

    Article  CAS  PubMed  Google Scholar 

  23. Reynolds PN, Zinn KR, Gavrilyuk VD, Balyasnikova IV, Rogers BE, Buchsbaum DJ et al. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol Ther 2000; 2: 562–578.

    Article  CAS  PubMed  Google Scholar 

  24. Everts M, Kim-Park SA, Preuss MA, Passineau MJ, Glasgow JN, Pereboev AV et al. Selective induction of tumor-associated antigens in murine pulmonary vasculature using double-targeted adenoviral vectors. Gene Therapy 2005; 12: 1042–1048.

    Article  CAS  PubMed  Google Scholar 

  25. Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 2008; 105: 5483–5488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vigant F, Descamps D, Jullienne B, Esselin S, Connault E, Opolon P et al. Substitution of hexon hypervariable region 5 of adenovirus serotype 5 abrogates blood factor binding and limits gene transfer to liver. Mol Ther 2008; 16: 1474–1480.

    Article  CAS  PubMed  Google Scholar 

  27. Alba R, Bradshaw AC, Parker AL, Bhella D, Waddington SN, Nicklin SA et al. Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood 2009; 114: 965–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alba R, Bradshaw AC, Coughlan L, Denby L, McDonald RA, Waddington SN et al. Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood 2010; 116: 2656–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reynolds PN, Nicklin SA, Kaliberova L, Boatman BG, Grizzle WE, Balyasnikova IV et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 2001; 19: 838–842.

    Article  CAS  PubMed  Google Scholar 

  30. Wiggs BR, English D, Quinlan WM, Doyle NA, Hogg JC, Doerschuk CM . Contributions of capillary pathway size and neutrophil deformability to neutrophil transit through rabbit lungs. J Appl Physiol 1994; 77: 463–470.

    Article  CAS  PubMed  Google Scholar 

  31. Kuebler WM, Goetz AE . The marginated pool. Eur Surg Res 2002; 34: 92–100.

    Article  PubMed  Google Scholar 

  32. Sallenave JM, Porteous DJ, Haslett C . Gene therapy for lung inflammatory diseases: not so far away? Thorax 1997; 52: 742–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alberti MO, Roth JC, Ismail M, Tsurata Y, Abraham E, Pereboeva L et al. Derivation of a myeloid cell-binding adenovirus for gene therapy of inflammation. PLoS One 2012; 7: e37812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doerschuk CM, Downey GP, Doherty DE, English D, Gie RP, Ohgami M et al. Leukocyte and platelet margination within microvasculature of rabbit lungs. J Appl Physiol 1990; 68: 1956–1961.

    Article  CAS  PubMed  Google Scholar 

  35. Izumi M, Kawakami Y, Glasgow JN, Belousova N, Everts M, Kim-Park S et al. In vivo analysis of a genetically modified adenoviral vector targeted to human CD40 using a novel transient transgenic model. J Gene Med 2005; 7: 1517–1525.

    Article  CAS  PubMed  Google Scholar 

  36. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Therapy 2001; 8: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  37. Frank DB, Abtahi A, Yamaguchi DJ, Manning S, Shyr Y, Pozzi A et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 2005; 97: 496–504.

    Article  CAS  PubMed  Google Scholar 

  38. Khare R, May SM, Vetrini F, Weaver EA, Palmer D, Rosewell A et al. Generation of a Kupffer cell-evading adenovirus for systemic and liver-directed gene transfer. Mol Ther 2011; 19: 1254–1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Corjon S, Gonzalez G, Henning P, Grichine A, Lindholm L, Boulanger P et al. Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon:heparan sulfate interaction. PLoS One 2011; 6: e18205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson M, Huyn S, Burton J, Sato M, Wu L . Differential biodistribution of adenoviral vector in vivo as monitored by bioluminescence imaging and quantitative polymerase chain reaction. Hum Gene Ther 2006; 17: 1262–1269.

    Article  CAS  PubMed  Google Scholar 

  41. Roth JC, Curiel DT, Pereboeva L . Cell vehicle targeting strategies. Gene Therapy 2008; 15: 716–729.

    Article  CAS  PubMed  Google Scholar 

  42. Cole C, Qiao J, Kottke T, Diaz RM, Ahmed A, Sanchez-Perez L et al. Tumor-targeted, systemic delivery of therapeutic viral vectors using hitchhiking on antigen-specific T cells. Nat Med 2005; 11: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  43. Tallone T, Malin S, Samuelsson A, Wilbertz J, Miyahara M, Okamoto K et al. A mouse model for adenovirus gene delivery. Proc Natl Acad Sci USA 2001; 98: 7910–7915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noureddini SC, Krendelshchikov A, Simonenko V, Hedley SJ, Douglas JT, Curiel DT et al. Generation and selection of targeted adenoviruses embodying optimized vector properties. Virus Res 2006; 116: 185–195.

    Article  CAS  PubMed  Google Scholar 

  45. Maizel JV, White DO, Scharff MD . The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 1968; 36: 115–125.

    Article  CAS  PubMed  Google Scholar 

  46. Douglas JT, Miller CR, Kim M, Dmitriev I, Mikheeva G, Krasnykh V et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotechnol 1999; 17: 470–475.

    Article  CAS  PubMed  Google Scholar 

  47. Reynolds P, Dmitriev I, Curiel D . Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Therapy 1999; 6: 1336–1339.

    Article  CAS  PubMed  Google Scholar 

  48. Davies LA, Varathalingam A, Painter H, Lawton AE, Sumner-Jones SG, Nunez-Alonso GA et al. Adenovirus-mediated in utero expression of CFTR does not improve survival of CFTR knockout mice. Mol Ther 2008; 16: 812–818.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH Grants R42CA114921 and R01HL092941 to DTC and the Gene Therapy Center at UAB. MOA was supported in part by a training grant to the UAB Medical Scientist Training Program (NIH T32GM008361). JCR was supported in part by the training grant NIH T32CA075930 and by a grant from the Kaul Pediatric Research Institute. We would like to acknowledge all of the following people at UAB: the laboratories of Richard J Whitley and James M Markert for valuable support; Louis B Justement and Namasivayam Ambalavanan for key reagents; Pamela Powell, Dezhi Wang, Gene Seigel and the Comparative Pathology Laboratory for assistance with IHC; Kimberly Thomas, Robert Snelgrove, David Gaston and Brian Dizon for technical assistance; members of the Curiel lab, including Igor Dmitriev, Elena Kashentseva, Hideyo Ugai, Alexander Pereboev, Svetlana Komarova, Meredith Preuss and Joel Glasgow for valuable support and helpful discussions. We are also indebted to Marion Spell for assistance with FACS and J Edwin Blalock, Amit Gaggar and Dennis Revie for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D T Curiel or J C Roth.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberti, M., Deshane, J., Chaplin, D. et al. A myeloid cell-binding adenovirus efficiently targets gene transfer to the lung and escapes liver tropism. Gene Ther 20, 733–741 (2013). https://doi.org/10.1038/gt.2012.91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.91

Keywords

This article is cited by

Search

Quick links