Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Distinct transduction difference between adeno-associated virus type 1 and type 6 vectors in human polarized airway epithelia

Abstract

Of the many biologically isolated adeno-associated virus (AAV) serotypes, AAV1 and AAV6 share the highest degree of sequence homology, with only six different capsid residues. We compared the transduction efficiencies of rAAV1 and rAAV6 in primary polarized human airway epithelia and found significant differences in their abilities to transduce epithelia from the apical and basolateral membranes. rAAV1 transduction was 10-fold higher than rAAV6 following apical infection, whereas rAAV6 transduction was 10-fold higher than rAAV1 following basolateral infection. Furthermore, rAAV6 demonstrated significant polarity of transduction (100-fold; basolateral » apical), whereas rAAV1 transduced from both membranes with equal efficiency. To evaluate capsid residues responsible for the observed serotype differences, we mutated the six divergent amino acids either alone or in combination. Results from these studies demonstrated that capsid residues 418 and 531 most significantly controlled membrane polarity differences in transduction between serotypes, with the rAAV6-D418E/K531E mutant demonstrating decreased (10-fold) basolateral transduction and the rAAV1-E418D/E531K mutant demonstrating a transduction polarity identical to rAAV6-WT (wild type). However, none of the rAAV6 mutants obtained apical transduction efficiencies of rAAV1-WT, suggesting that all six divergent capsid residues in AAV1 act in concert to improve apical transduction of HAE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Blacklow NR . Adeno-associated viruses of human. In: Pattison JR (ed). Parvoviruses and Human Disease. CRC Press Boca Raton, 1988, pp 165–174.

    Google Scholar 

  2. Carter BJ . Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther 2004; 10: 981–989.

    Article  CAS  PubMed  Google Scholar 

  3. Carter BJ . Adeno-associated virus vectors in clinical trials. Hum Gene Ther 2005; 16: 541–550.

    Article  CAS  PubMed  Google Scholar 

  4. Gao G, Vandenberghe LH, Wilson JM . New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285–297.

    Article  CAS  PubMed  Google Scholar 

  5. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14: 316–327.

    Article  CAS  PubMed  Google Scholar 

  6. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE . Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  7. Schaffer DV, Maheshri N . Directed evolution of AAV mutants for enhanced gene delivery. Conf Proc IEEE Eng Med Biol Soc 2004; 5: 3520–3523.

    CAS  Google Scholar 

  8. Koerber JT, Jang JH, Schaffer DV . DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol Ther 2008; 16: 1703–1709.

    Article  CAS  PubMed  Google Scholar 

  9. Excoffon KJ, Koerber JT, Dickey DD, Murtha M, Keshavjee S, Kaspar BK et al. Directed evolution of adeno-associated virus to an infectious respiratory virus. Proc Natl Acad Sci USA 2009; 106: 3865–3870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010; 21: 704–712.

    Article  CAS  PubMed  Google Scholar 

  11. Padron E, Bowman V, Kaludov N, Govindasamy L, Levy H, Nick P et al. Structure of adeno-associated virus type 4. J Virol 2005; 79: 5047–5058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li W, Zhang L, Johnson JS, Zhijian W, Grieger JC, Ping-Jie X et al. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium. Mol Ther 2009; 17: 2067–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Halbert CL, Allen JM, Miller AD . Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 2001; 75: 6615–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ . Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 2006; 80: 11393–11397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ . Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 2006; 80: 9093–9103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grimm D, Zhou S, Nakai H, Thomas CE, Storm TA, Fuess S et al. Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood 2003; 102: 2412–2419.

    Article  CAS  PubMed  Google Scholar 

  17. Grimm D, Kay MA, Kleinschmidt JA . Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 2003; 7: 839–850.

    Article  CAS  PubMed  Google Scholar 

  18. Flotte TR . Recent developments in recombinant AAV-mediated gene therapy for lung diseases. Curr Gene Ther 2005; 5: 361–366.

    Article  CAS  PubMed  Google Scholar 

  19. Aitken ML, Moss RB, Waltz DA, Dovey ME, Tonelli MR, McNamara SC et al. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther 2001; 12: 1907–1916.

    Article  CAS  PubMed  Google Scholar 

  20. Wagner JA, Nepomuceno IB, Messner AH, Moran ML, Batson EP, Dimiceli S et al. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. Hum Gene Ther 2002; 13: 1349–1359.

    Article  CAS  PubMed  Google Scholar 

  21. Moss RB, Milla C, Colombo J, Accurso F, Zeitlin PL, Clancy JP et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther 2007; 18: 726–732.

    Article  CAS  PubMed  Google Scholar 

  22. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF . Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000; 105: 1573–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan Z, Lei-Butters DC, Liu X, Zhang Y, Zhang L, Luo M et al. Unique biologic properties of recombinant AAV1 transduction in polarized human airway epithelia. J Biol Chem 2006; 281: 29684–29692.

    Article  CAS  PubMed  Google Scholar 

  24. Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF . Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76: 2043–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 2008; 381: 194–202.

    Article  CAS  PubMed  Google Scholar 

  26. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008; 105: 7827–7832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ding W, Zhang L, Yan Z, Engelhardt JF . Intracellular trafficking of adeno-associated viral vectors. Gene Therapy 2005; 12: 873–880.

    Article  CAS  PubMed  Google Scholar 

  28. Limberis MP, Vandenberghe LH, Zhang L, Pickles RJ, Wilson JM . Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 2009; 17: 294–301.

    Article  CAS  PubMed  Google Scholar 

  29. Virella-Lowell I, Zusman B, Foust K, Loiler S, Conlon T, Song S et al. Enhancing rAAV vector expression in the lung. J Gene Med 2005; 7: 842–850.

    Article  CAS  PubMed  Google Scholar 

  30. Halbert CL, Madtes DK, Vaughan AE, Wang Z, Storb R, Tapscott SJ et al. Expression of human alpha1-antitrypsin in mice and dogs following AAV6 vector-mediated gene transfer to the lungs. Mol Ther 2010; 18: 1165–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flotte TR, Fischer AC, Goetzmann J, Mueller C, Cebotaru L, Yan Z et al. Dual reporter comparative indexing of rAAV pseudotyped vectors in chimpanzee airway. Mol Ther 2010; 18: 594–600.

    Article  CAS  PubMed  Google Scholar 

  32. Ding W, Zhang LN, Yeaman C, Engelhardt JF . rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion. Mol Ther 2006; 13: 671–682.

    Article  CAS  PubMed  Google Scholar 

  33. Agbandje-McKenna M, Kleinschmidt J . AAV capsid structure and cell interactions. Methods Mol Biol 2011; 807: 47–92.

    Article  CAS  PubMed  Google Scholar 

  34. Chapman MS, Agbandje-McKenna M . Atomic structure of viral particles. In: Kerr JR, Cotmore SF, Bloom ME, Linden RM, Parrish CR (eds). Parvoviruses. Edward Arnold, Ltd New York, NY, 2006, pp 107–123.

    Google Scholar 

  35. Ng R, Govindasamy L, Gurda BL, McKenna R, Kozyreva OG, Samulski RJ et al. Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J Virol 2010; 84: 12945–12957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nam HJ, Gurda BL, McKenna R, Potter M, Byrne B, Salganik M et al. Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking. J Virol 2011; 85: 11791–11799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lerch TF, Xie Q, Chapman MS . The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion. Virology 2010; 403: 26–36.

    Article  CAS  PubMed  Google Scholar 

  38. Liu X, Luo M, Guo C, Yan Z, Wang Y, Engelhardt JF . Comparative biology of rAAV transduction in ferret, pig and human airway epithelia. Gene Therapy 2007; 14: 1543–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu X, Luo M, Trygg C, Yan Z, Lei-Butters DC, Smith CI et al. Biological differences in rAAV transduction of airway epithelia in humans and in old world non-human primates. Mol Ther 2007; 15: 2114–2123.

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, Yan Z, Luo M, Engelhardt JF . Species-specific differences in mouse and human airway epithelial biology of recombinant adeno-associated virus transduction. Am J Respir Cell Mol Biol 2006; 34: 56–64.

    Article  PubMed  Google Scholar 

  41. Li W, Zhang L, Wu Z, Pickles RJ, Samulski RJ . AAV-6 mediated efficient transduction of mouse lower airways. Virology 2011; 417: 327–333.

    Article  CAS  PubMed  Google Scholar 

  42. Karp PH, Moninger TO, Weber SP, Nesselhauf TS, Launspach JL, Zabner J et al. An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol Biol 2002; 188: 115–137.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HL108902 (to JFE), the Roy J Carver Chair in Molecular Medicine (to JFE), and the University of Iowa Center for Gene Therapy (DK54759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J F Engelhardt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Lei-Butters, D., Keiser, N. et al. Distinct transduction difference between adeno-associated virus type 1 and type 6 vectors in human polarized airway epithelia. Gene Ther 20, 328–337 (2013). https://doi.org/10.1038/gt.2012.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.46

Keywords

This article is cited by

Search

Quick links