Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sstr2A: a relevant target for the delivery of genes into human glioblastoma cells using fiber-modified adenoviral vectors

Abstract

Glioblastomas are the most aggressive of the brain tumors occurring in adults and children. Currently available chemotherapy prolongs the median survival time of patients by only 4 months. The low efficiency of current treatments is partly owing to the blood–brain barrier, which restricts the penetration of most drugs into the central nervous system. Locoregional treatment strategies thus become mandatory. In this context, viral tools are of great interest for the selective delivery of genes into tumoral cells. Gliomas express high levels of type 2 somatostatin receptors (sstr2A), pinpointing them as suitable targets for the improvement of transduction efficiency in these tumors. We designed a new adenoviral vector based on the introduction of the full-length somatostatin (SRIF (somatotropin release-inhibiting factor)) sequence into the HI loop of the HAdV fiber protein. We demonstrate that (i) HAdV-5-SRIF uptake into cells is mediated by sstr2A, (ii) our vector drives high levels of gene expression in cells expressing endogenous sstr2A, with up to 65-fold enhancement and (iii) low doses of HAdV-5-SRIF are sufficient to infect high-grade human primary glioblastoma cells. Adenoviral vectors targeting SRIF receptors might thus represent a promising therapeutic approach to brain tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY . Primary brain tumours in adults. Lancet 2003; 361: 323–331.

    Article  Google Scholar 

  2. Kroeger KM, Muhammad AK, Baker GJ, Assi H, Wibowo MK, Xiong W et alGene therapy and virotherapy: novel therapeutic approaches for brain tumors. Discov Med 2010; 10: 293–304.

    PubMed  PubMed Central  Google Scholar 

  3. Jakobsson J, Lundberg C . Lentiviral vectors for use in the central nervous system. Mol Ther 2006; 13: 484–493.

    Article  CAS  Google Scholar 

  4. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et alA serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  Google Scholar 

  5. Campos SK, Barry MA . Current advances and future challenges in adenoviral vector biology and targeting. Curr Gene Ther 2007; 7: 189–204.

    Article  CAS  Google Scholar 

  6. Hendrie PC, Russell W . Gene targeting with viral vectors. Mol Ther 2005; 12: 9–17.

    Article  CAS  Google Scholar 

  7. Russell WC . Adenoviruses: update on structure and function. J Gen Virol 2009; 90 (Part 1): 1–20.

    Article  CAS  Google Scholar 

  8. Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ . Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.

    Article  CAS  Google Scholar 

  9. Barnett BG, Crews CJ, Douglas JT . Targeted adenoviral vectors. Biochim Biophys Acta. 2002; 1575: 1–14.

    Article  CAS  Google Scholar 

  10. Dechecchi MC, Melotti P, Bonizzato A, Santacatterina M, Chilosi M, Cabrini G . Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75: 8772–8780.

    Article  CAS  Google Scholar 

  11. Sullivan DE, Dash S, Du H, Hiramatsu N, Aydin F, Kolls J et alLiver-directed gene transfer in non-human primates. Hum Gene Ther 1997; 8: 1195–1206.

    Article  CAS  Google Scholar 

  12. Leissner P, Legrand V, Schlesinger Y, Hadji DA, van Raaij M, Cusack S et alInfluence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Therapy 2001; 8: 49–57.

    Article  CAS  Google Scholar 

  13. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Therapy 2001; 8: 1347–1353.

    Article  CAS  Google Scholar 

  14. Smith T, Idamakanti N, Kylefjord H, Rollence M, King L, Kaloss M et al In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 2002; 5: 770–779.

    Article  CAS  Google Scholar 

  15. Parker AL, McVey JH, Doctor JH, Lopez-Franco O, Waddington SN, Havenga MJ et alInfluence of coagulation factor zymogens on the infectivity of adenoviruses pseudotyped with fibers from subgroup D. J Virol 2007; 81: 3627–3631.

    Article  CAS  Google Scholar 

  16. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A . Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 2005; 79: 7478–7491.

    Article  CAS  Google Scholar 

  17. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et alAdenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397–409.

    Article  CAS  Google Scholar 

  18. Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et alAdenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 2008; 105: 5483–5488.

    Article  CAS  Google Scholar 

  19. Vigant F, Descamps D, Jullienne B, Esselin S, Connault E, Opolon P et alSubstitution of hexon hypervariable region 5 of adenovirus serotype 5 abrogates blood factor binding and limits gene transfer to liver. Mol Ther 2008; 16: 1474–1480.

    Article  CAS  Google Scholar 

  20. Alba R, Bradshaw AC, Parker AL, Bhella D, Waddington SN, Nicklin SA et alIdentification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood 2009; 114: 965–971.

    Article  CAS  Google Scholar 

  21. Sharma A, Li X, Bangari DS, Mittal SK . Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143: 184–194.

    Article  CAS  Google Scholar 

  22. Renaut L, Colin M, Leite JP, Benko M, D'Halluin JC . Abolition of hCAR-dependent cell tropism using fiber knobs of Atadenovirus serotypes. Virology 2004; 321: 189–204.

    Article  CAS  Google Scholar 

  23. Rogée S, Grellier E, Bernard C, Jouy N, Loyens A, Beauvillain JC et alInfluence of chimeric human-bovine fibers on adenoviral entry into liver cells and the antiviral immune response. Gene Therapy 2010; 17: 880–891.

    Article  Google Scholar 

  24. Nandi S, Lesniak MS . Adenoviral virotherapy for malignant brain tumors. Expert Opin Biol Ther 2009; 9: 737–747.

    Article  CAS  Google Scholar 

  25. Candolfi M, Curtin JF, Xiong WD, Kroeger KM, Liu C, Rentsendorj A et alEffective high-capacity gutless adenoviral vectors mediate transgene expression in human glioma cells. Mol Ther 2006; 14: 371–381.

    Article  CAS  Google Scholar 

  26. Wang W, Zhu NL, Chua J, Swenson S, Costa FK, Schmitmeier S et alRetargeting of adenoviral vector using basic fibroblast growth factor ligand for malignant glioma gene therapy. J Neurosurg 2005; 103: 1058–1066.

    Article  CAS  Google Scholar 

  27. Asaoka K, Tada M, Sawamura Y, Ikeda J, Abe H . Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus receptor. J Neurosurg 2000; 92: 1002–1008.

    Article  CAS  Google Scholar 

  28. Grill J, Van Beusechem VW, Van Der Valk P, Dirven CM, Leonhart A, Pherai DS et alCombined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin Cancer Res 2001; 7: 641–650.

    CAS  PubMed  Google Scholar 

  29. Kim M, Zinn KR, Barnett BG, Sumerel LA, Krasnykh V, Curiel DT et alThe therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. Eur J Cancer 2002; 38: 1917–1926.

    Article  CAS  Google Scholar 

  30. van Beusechem VW, Grill J, Mastenbroek DC, Wickham TJ, Roelvink PW, Haisma HJ et alEfficient and selective gene transfer into primary human brain tumors by using single-chain antibody-targeted adenoviral vectors with native tropism abolished. J Virol 2002; 76: 2753–2762.

    Article  CAS  Google Scholar 

  31. Gupta V, Wang W, Sosnowski BA, Hofman FM, Chen TC . Fibroblast growth factor-2-retargeted adenoviral vector for selective transduction of primary glioblastoma multiforme endothelial cells. Neurosurg Focus 2006; 20: E26.

    Article  Google Scholar 

  32. Piao Y, Jiang H, Alemany R, Krasnykh V, Marini FC, Xu J et alOncolytic adenovirus retargeted to Delta-EGFR induces selective antiglioma activity. Cancer Gene Ther 2009; 16: 256–265.

    Article  CAS  Google Scholar 

  33. Leja J, Yu D, Nilsson B, Gedda L, Zieba A, Hakkarainen T et alOncolytic adenovirus modified with somatostatin motifs for selective infection of neuroendocrine tumor cells. Gene Therapy 2011; 18: 1052–1062.

    Article  CAS  Google Scholar 

  34. Mailly L, Renaut L, Rogee S, Grellier E, D'Halluin JC, Colin M . Improved gene delivery to B lymphocytes using a modified adenovirus vector targeting CD21. Mol Ther 2006; 14: 293–304.

    Article  CAS  Google Scholar 

  35. Held-Feindt JKB, Forstreuter F, Mentlein R . Somatostatin receptors in gliomas. J Physiol Paris 2000; 94: 251–258.

    Article  CAS  Google Scholar 

  36. Mentlein R, Held-Feindt J, Krisch B . Topology of the signal transduction of the G protein-coupled somatostatin receptor sst2 in human glioma cells. Cell Tissue Res 2001; 303: 27–34.

    Article  CAS  Google Scholar 

  37. Krisch B, Feindt J, Mentlein R . Immunoelectronmicroscopic analysis of the ligand-induced internalization of the somatostatin receptor subtype 2 in cultured human glioma cells. J Histochem Cytochem 1998; 46: 1233–1242.

    Article  CAS  Google Scholar 

  38. Colin M, Mailly L, Rogee S, D'Halluin JC . Efficient species C HAdV infectivity in plasmocytic cell lines using a clathrin-independent lipid raft/caveola endocytic route. Mol Ther 2005; 11: 224–236.

    Article  CAS  Google Scholar 

  39. Cervia D, Bagnoli P . An update on somatostatin receptor signaling in native systems and new insights on their pathophysiology. Pharmacol Ther 2007; 116: 322–341.

    Article  CAS  Google Scholar 

  40. Patel YC . Somatostatin and its receptor family. Front Neuroendocrinol. 1999; 20: 157–198.

    Article  CAS  Google Scholar 

  41. Csaba Z, Dournaud P . Cellular biology of somatostatin receptors. Neuropeptides 2001; 35: 1–23.

    Article  CAS  Google Scholar 

  42. Vanetti M, Vogt G, Hollt V . The two isoforms of the mouse somatostatin receptor (mSSTR2A and mSSTR2B) differ in coupling efficiency to adenylate cyclase and in agonist-induced receptor desensitization. FEBS Lett 1993; 331: 260–266.

    Article  CAS  Google Scholar 

  43. Renaut L, Bernard C, D'Halluin JC . A rapid and easy method for production and selection of recombinant adenovirus genomes. J Virol Methods 2002; 100: 121–131.

    Article  CAS  Google Scholar 

  44. Devaux C, Caillet-Boudin ML, Jacrot B, Boulanger P . Crystallization, enzymatique cleavage, and the polarity of the adénovirus type 2 fiber. Virology 1987; 161: 121–128.

    Article  CAS  Google Scholar 

  45. Csaba Z, Lelouvier B, Viollet C, El Ghouzzi V, Toyama K, Videau C et alActivated somatostatin type 2 receptors traffic in vivo in central neurons from dendrites to the trans Golgi before recycling. Traffic 2007; 8: 820–834.

    Article  CAS  Google Scholar 

  46. Csaba Z, Simon A, Helboe L, Epelbaum J, Dournaud P . Targeting sst2A receptor-expressing cells in the rat hypothalamus through in vivo agonist stimulation: neuroanatomical evidence for a major role of this subtype in mediating somatostatin functions. Endocrinology 2003; 144: 1564–1573.

    Article  CAS  Google Scholar 

  47. Rogee S, Grellier E, Bernard C, Loyens A, Beauvillain JC, D'Halluin JC et alIntracellular trafficking of a fiber-modified adenovirus using lipid raft/caveolae endocytosis. Mol Ther 2007; 15: 1963–1972.

    Article  CAS  Google Scholar 

  48. Boisgerault N, Tangy F, Gregoire M . New perspectives in cancer virotherapy: bringing the immune system into play. Immunotherapy 2010; 2: 185–199.

    Article  CAS  Google Scholar 

  49. Rommelaere J, Geletneky K, Angelova AL, Daeffler L, Dinsart C, Kiprianova I et alOncolytic parvoviruses as cancer therapeutics. Cytokine Growth Factor Rev 2010; 21: 185–195.

    Article  CAS  Google Scholar 

  50. Münch RC, Mühlebach MD, Schaser T, Kneissl S, Jost C, Plückthun A et alDARPins: an efficient targeting domain for lentiviral vectors. Mol Ther 2011; 19: 686–693.

    Article  Google Scholar 

  51. Ayala Breton C, Barber GN, Russell S, Peng KW . Retargeting Vesicular Stomatitis virus using Measles virus envelope glycoproteins. Hum Gene Ther 2011.

  52. White K, Büning H, Kritz A, Janicki H, McVey J, Perabo L et alEngineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions. Gene Therapy 2008; 15: 443–451.

    Article  CAS  Google Scholar 

  53. Campadelli-Fiume G, De Giovanni C, Gatta V, Nanni P, Lollini PL, Menotti L . Rethinking herpes simplex virus: the way to oncolytic agents. Rev Med Virol 2011; 21: 213–226.

    Article  CAS  Google Scholar 

  54. Cawood R, Chen HH, Carroll F, Bazan-Peregrino M, van Rooijen N, Seymour LW . Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells. PLoS Pathog 2009; 5: e1000440.

    Article  Google Scholar 

  55. Kron MW, Espenlaub S, Engler T, Schirmbeck R, Kochanek S, Kreppel F . miRNA-mediated silencing in hepatocytes can increase adaptive immune responses to adenovirus vector-delivered transgenic antigens. Mol Ther 19: 1547–1557.

  56. Bewley MC, Springer K, Zhang YB, Freimuth P, Flanagan JM . Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 1999; 286: 1579–1583.

    Article  CAS  Google Scholar 

  57. Chiu CY, Mathias P, Nemerow GR, Stewart PL . Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin. J Virol 1999; 73: 6759–6768.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kao YJ, Ghosh M, Schonbrunn A . Ligand-dependent mechanisms of sst2a receptor trafficking: role of site-specific phosphorylation and receptor activation in the actions of biased somatostatin agonists. Mol Endocrinol 2011; 25: 1040–1054.

    Article  CAS  Google Scholar 

  59. Leopold PL, Ferris B, Grinberg I, Worgall S, Hackett NR, Crystal RG . Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum Gene Ther 1998; 9: 367–378.

    Article  CAS  Google Scholar 

  60. Lelouvier B, Tamagno G, Kaindl AM, Roland A, Lelievre V, Le Verche V et alDynamics of somatostatin type 2A receptor cargoes in living hippocampal neurons. J Neurosci 2008; 28: 4336–4349.

    Article  CAS  Google Scholar 

  61. Dournaud P, Boudin H, Schonbrunn A, Tannenbaum GS, Beaudet A . Interrelationships between somatostatin sst2A receptors and somatostatin-containing axons in rat brain: evidence for regulation of cell surface receptors by endogenous somatostatin. J Neurosci 1998; 18: 1056–1071.

    Article  CAS  Google Scholar 

  62. Csaba Z, Richichi C, Bernard V, Epelbaum J, Vezzani A, Dournaud P . Plasticity of somatostatin and somatostatin sst2A receptors in the rat dentate gyrus during kindling epileptogenesis. Eur J Neurosci 2004; 19: 2531–2538.

    Article  Google Scholar 

  63. Csaba Z, Pirker S, Lelouvier B, Simon A, Videau C, Epelbaum J et alSomatostatin receptor type 2 undergoes plastic changes in the human epileptic dentate gyrus. J Neuropathol Exp Neurol 2005; 64: 956–969.

    Article  CAS  Google Scholar 

  64. Nayak S, Herzog RW . Progress and prospects: immune responses to viral vectors. Gene Therapy 2010; 17: 295–304.

    Article  CAS  Google Scholar 

  65. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R et alAdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004; 10: 967–972.

    Article  CAS  Google Scholar 

  66. Kleihues P, Burger PC, Collins VP, Newcomb EW, Ohgaki H, Cavenee WK . Pathology and genetics of tumours of the nervous system. Glioblastoma 2000: 29–39.

  67. Sharif A, Duhem-Tonnelle V, Allet C, Baroncini M, Loyens A, Kerr-Conte J et alDifferential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. Glia 2009; 57: 362–379.

    Article  Google Scholar 

  68. Mathis JM, Bhatia S, Khandelwal A, Kovesdi I, Lokitz SJ, Odaka Y et alGenetic incorporation of human metallothionein into the adenovirus protein IX for non-invasive SPECT imaging. PLoS One 2011; 6: e16792.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Inserm, CNRS, IMPRT, University of Lille 2, Région Nord/Pas-de-Calais, FEDER, DN2M and grants from ANR-08-MNPS-002/AMYTOXTAU and the European Community: MEMOSAD (FP7 contract 200611), FRC (‘Fondation pour la Recherche sur le Cerveau’), Ligue Nationale contre le Cancer (Comité du Nord), Institut de Recherches sur le Cancer de Lille, IRCL. Dr Dournaud was supported by the Université Denis Diderot-Paris 7, Assistance Publique-Hôpitaux de Paris (AP-HP) (contrat d’interface), Association pour la Recherche sur le Cancer (ARC) and FRC. The authors are grateful to Dr Galas, Dr Blum and Dr Caillet-Boudin for their thoughtful discussion and critical reading of the manuscript. We are also grateful to the IMPRT (Institut de Médecine Prédictive et de Recherche Thérapeutique, Lille) for access to core facilities (electron microscopy, cell sorting and confocal microscopy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Colin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lécolle, K., Bégard, S., Caillierez, R. et al. Sstr2A: a relevant target for the delivery of genes into human glioblastoma cells using fiber-modified adenoviral vectors. Gene Ther 20, 283–297 (2013). https://doi.org/10.1038/gt.2012.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.39

Keywords

This article is cited by

Search

Quick links