Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

Self-inactivating helper virus for the production of high-capacity adenoviral vectors

Abstract

Standard methods for producing high-capacity adenoviral vectors (HC-Ads) are based on co-infection with a helper adenovirus (HV). To avoid HV encapsidation, its packaging signal (Ψ) is flanked by recognition sequences for recombinases expressed in the producing cells. However, accumulation of HV and low yield of HC-Ad are frequently observed, due in part to insufficient recombinase expression. We describe here a novel HV (AdTetCre) in which Ψ is flanked by loxP sites that can be excised by a chimeric MerCreMer recombinase encoded in the same viral genome. Efficient modulation of cleavage was obtained by simultaneous control of MerCreMer expression using a tet-on inducible system, and translocation to the nucleus by 4-hydroxytamoxifen (TAM). Encapsidation of AdTetCre was strongly inhibited by TAM plus doxycicline. Using AdTetCre and 293Cre4 cells for the production of HC-Ads, we found that cellular and virus-encoded recombinases cooperate to minimize HV contamination. The method was highly reproducible and allowed the routine production of different HC-Ads in a medium-scale laboratory setting in adherent cells, with titers >1010 infectious units and <0.1% HV contamination. The residual HVs lacked Ψ and were highly attenuated. We conclude that self-inactivating HVs based on virally encoded recombinases are promising tools for the production of HC-Ads.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Morral N, O’Neal W, Rice K, Leland M, Kaplan J, Piedra PA et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci USA 1999; 96: 12816–12821.

    Article  CAS  Google Scholar 

  2. Alba R, Bosch A, Chillon M . Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Therapy 2005; 12 (Suppl 1): S18–S27.

    Article  CAS  Google Scholar 

  3. Brunetti-Pierri N, Ng P . Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors. Gene Therapy 2008; 15: 553–560.

    Article  CAS  Google Scholar 

  4. Brough DE, Lizonova A, Hsu C, Kulesa VA, Kovesdi I . A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions E1 and E4. J Virol 1996; 70: 6497–6501.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Umana P, Gerdes CA, Stone D, Davis JR, Ward D, Castro MG et al. Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nat Biotechnol 2001; 19: 582–585.

    Article  CAS  Google Scholar 

  6. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL . A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996; 93: 13565–13570.

    Article  CAS  Google Scholar 

  7. Suzuki M, Cela R, Clarke C, Bertin TK, Mourino S, Lee B . Large-scale production of high-quality helper-dependent adenoviral vectors using adherent cells in cell factories. Hum Gene Ther 2010; 21: 120–126.

    Article  CAS  Google Scholar 

  8. Jager L, Hausl MA, Rauschhuber C, Wolf NM, Kay MA, Ehrhardt A . A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat Protoc 2009; 4: 547–564.

    Article  CAS  Google Scholar 

  9. Muhammad AK, Puntel M, Candolfi M, Salem A, Yagiz K, Farrokhi C et al. Study of the efficacy, biodistribution, and safety profile of therapeutic gutless adenovirus vectors as a prelude to a phase I clinical trial for glioblastoma. Clin Pharmacol Ther 2010; 88: 204–213.

    Article  CAS  Google Scholar 

  10. Puntel M, Muhammad AK, Candolfi M, Salem A, Yagiz K, Farrokhi C et al. A novel bicistronic high-capacity gutless adenovirus vector that drives constitutive expression of herpes simplex virus type 1 thymidine kinase and tet-inducible expression of Flt3 L for glioma therapeutics. J Virol 2010; 84: 6007–6017.

    Article  CAS  Google Scholar 

  11. Alba R, Hearing P, Bosch A, Chillon M . Differential amplification of adenovirus vectors by flanking the packaging signal with attB/attP-PhiC31 sequences: implications for helper-dependent adenovirus production. Virology 2007; 367: 51–58.

    Article  CAS  Google Scholar 

  12. Palmer D, Ng P . Improved system for helper-dependent adenoviral vector production. Mol Ther 2003; 8: 846–852.

    Article  CAS  Google Scholar 

  13. Ng P, Evelegh C, Cummings D, Graham FL . Cre levels limit packaging signal excision efficiency in the Cre/loxP helper-dependent adenoviral vector system. J Virol 2002; 76: 4181–4189.

    Article  CAS  Google Scholar 

  14. Zabala M, Wang L, Hernandez-Alcoceba R, Hillen W, Qian C, Prieto J et al. Optimization of the Tet-on system to regulate interleukin 12 expression in the liver for the treatment of hepatic tumors. Cancer Res 2004; 64: 2799–2804.

    Article  CAS  Google Scholar 

  15. Verrou C, Zhang Y, Zurn C, Schamel WW, Reth M . Comparison of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biol Chem 1999; 380: 1435–1438.

    Article  CAS  Google Scholar 

  16. Crettaz J, Olague C, Vales A, Aurrekoetxea I, Berraondo P, Otano I et al. Characterization of high-capacity adenovirus production by the quantitative real-time polymerase chain reaction: a comparative study of different titration methods. J Gene Med 2008; 10: 1092–1101.

    Article  CAS  Google Scholar 

  17. Dormond E, Perrier M, Kamen A . Identification of critical infection parameters to control helper-dependent adenoviral vector production. J Biotechnol 2009; 142: 142–150.

    Article  CAS  Google Scholar 

  18. Wang L, Hernandez-Alcoceba R, Shankar V, Zabala M, Kochanek S, Sangro B et al. Prolonged and inducible transgene expression in the liver using gutless adenovirus: a potential therapy for liver cancer. Gastroenterology 2004; 126: 278–289.

    Article  CAS  Google Scholar 

  19. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res 2007; 13: 4677–4685.

    Article  CAS  Google Scholar 

  20. Smith GA, Enquist LW . A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc Natl Acad Sci USA 2000; 97: 4873–4878.

    Article  CAS  Google Scholar 

  21. Schmid SI, Hearing P . Cellular components interact with adenovirus type 5 minimal DNA packaging domains. J Virol 1998; 72: 6339–6347.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ostapchuk P, Hearing P . Control of adenovirus packaging. J Cell Biochem 2005; 96: 25–35.

    Article  CAS  Google Scholar 

  23. Maeda Y, Kimura E, Uchida Y, Nishida Y, Yamashita S, Arima T et al. Cre/loxP-mediated adenovirus type 5 packaging signal excision demonstrates that core element VI is sufficient for virus packaging. Virology 2003; 309: 330–338.

    Article  CAS  Google Scholar 

  24. Yoshimura K, Rosenfeld MA, Seth P, Crystal RG . Adenovirus-mediated augmentation of cell transfection with unmodified plasmid vectors. J Biol Chem 1993; 268: 2300–2303.

    CAS  PubMed  Google Scholar 

  25. Sargent KL, Ng P, Evelegh C, Graham FL, Parks RJ . Development of a size-restricted pIX-deleted helper virus for amplification of helper-dependent adenovirus vectors. Gene Therapy 2004; 11: 504–511.

    Article  CAS  Google Scholar 

  26. Fallaux FJ, Bout A, van der Velde I, van den Wollenberg DJ, Hehir KM, Keegan J et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 1998; 9: 1909–1917.

    Article  CAS  Google Scholar 

  27. Ng P, Beauchamp C, Evelegh C, Parks R, Graham FL . Development of a FLP/frt system for generating helper-dependent adenoviral vectors. Mol Ther 2001; 3: 809–815.

    Article  CAS  Google Scholar 

  28. Dormond E, Chahal P, Bernier A, Tran R, Perrier M, Kamen A . An efficient process for the purification of helper-dependent adenoviral vector and removal of helper virus by iodixanol ultracentrifugation. J Virol Methods 2010; 165: 83–89.

    Article  CAS  Google Scholar 

  29. Chen L, Anton M, Graham FL . Production and characterization of human 293 cell lines expressing the site-specific recombinase Cre. Somat Cell Mol Genet 1996; 22: 477–488.

    Article  CAS  Google Scholar 

  30. Qian C, Bilbao R, Bruna O, Prieto J . Induction of sensitivity to ganciclovir in human hepatocellular carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase. Hepatology 1995; 22: 118–123.

    CAS  PubMed  Google Scholar 

  31. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  Google Scholar 

  32. Toietta G, Pastore L, Cerullo V, Finegold M, Beaudet AL, Lee B . Generation of helper-dependent adenoviral vectors by homologous recombination. Mol Ther 2002; 5: 204–210.

    Article  CAS  Google Scholar 

  33. Ng P, Parks RJ, Graham FL . Preparation of helper-dependent adenoviral vectors. Methods Mol Med 2002; 69: 371–388.

    CAS  PubMed  Google Scholar 

  34. Dormond E, Meneses-Acosta A, Jacob D, Durocher Y, Gilbert R, Perrier M et al. An efficient and scalable process for helper-dependent adenoviral vector production using polyethylenimine-adenofection. Biotechnol Bioeng 2009; 102: 800–810.

    Article  CAS  Google Scholar 

  35. Hernandez-Alcoceba R, Pihalja M, Wicha MS, Clarke MF . A novel, conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum Gene Ther 2000; 11: 2009–2024.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by Fundacion Ramon Areces; Fundacion MMA; Grants SAF2009-11324, BFU2007-60228; BFU2010-16382 from the Spanish Department of Science; and the UTE project CIMA. MGA was supported by a Torres Quevedo contract from the Spanish Department of Science. The technical support of Marian Fernandez Estevez is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Hernandez-Alcoceba.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Aparicio, M., Mauleon, I., Alzuguren, P. et al. Self-inactivating helper virus for the production of high-capacity adenoviral vectors. Gene Ther 18, 1025–1033 (2011). https://doi.org/10.1038/gt.2011.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.58

Keywords

This article is cited by

Search

Quick links