Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Selective atonal gene delivery improves balance function in a mouse model of vestibular disease

Abstract

Loss of balance is often due to loss of vestibular hair cells. In mammals, regeneration of functional hair cells in the mature sensory epithelium is limited; therefore, loss of sensory cells can lead to debilitating balance problems. Delivery of the transcription factor atonal (atoh1) after aminoglycoside ototoxicity has previously been shown to induce the transdifferentiation of supporting cells into new hair cells and restore function. A problem with mouse aminoglycoside models is that the partial loss of hair cells seen in human disease is difficult to establish consistently. To more closely mirror human clinical balance dysfunction, we have used systemic application of 3,3′-iminodipropionitrile (IDPN), a vestibulotoxic nitrile compound known to cause vestibular hair cell loss, to induce a consistent partial loss of vestibular hair cells. To determine if balance function could be restored, we delivered atoh1 using a new adenovirus vector, based on Ad28. The Ad28 adenovector is based on a human serotype with a low seroprevalence that appears to target gene delivery to vestibular supporting cells. To further provide cell type selectivity of gene delivery, we expressed atoh1 using the supporting cell-specific glial fibrillary acid protein promoter. Delivery of this vector to IDPN-damaged vestibular organs resulted in a significant recovery of vestibular hair cells and restoration of balance, as measured by time on rotarod compared with untreated controls.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tsuji K, Velazquez-Villasenor L, Rauch SD, Glynn RJ, Wall III C, Merchant SN . Temporal bone studies of the human peripheral vestibular system. Meniere's disease. Ann Otol Rhinol Laryngol Suppl 2000; 181: 26–31.

    Article  CAS  PubMed  Google Scholar 

  2. Kawamoto K, Izumikawa M, Beyer LA, Atkin GM, Raphael Y . Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity. Hear Res 2009; 247: 17–26.

    Article  CAS  PubMed  Google Scholar 

  3. Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT . Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 1993; 259: 1619–1622.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng JL, Keller G, Gao WQ . Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery. J Neurosci 1999; 19: 2161–2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zajonc TP, Roland PS . Vertigo and motion sickness. Part II: pharmacologic treatment. Ear Nose Throat J 2006; 85: 25–35.

    PubMed  Google Scholar 

  6. Tsuji K, Velazquez-Villasenor L, Rauch SD, Glynn RJ, Wall III C, Merchant SN . Temporal bone studies of the human peripheral vestibular system. Aminoglycoside ototoxicity. Annal Otol Rhinol Laryngol Suppl 2000; 181: 20–25.

    Article  CAS  Google Scholar 

  7. Adler HJ, Raphael Y . New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear. Neurosci Lett 1996; 205: 17–20.

    Article  CAS  PubMed  Google Scholar 

  8. Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R . A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 1995; 270: 8730–8738.

    Article  CAS  PubMed  Google Scholar 

  9. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA et al. Math1: an essential gene for the generation of inner ear hair cells. Science 1999; 284: 1837–1841.

    Article  CAS  PubMed  Google Scholar 

  10. Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW et al. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn 2005; 233: 570–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Izumikawa M, Minoda R, Kawamoto K, Abrashkin K, Swiderski DL, Dolan DF et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005; 11: 271–276.

    Article  CAS  PubMed  Google Scholar 

  12. Staecker H, Praetorius M, Baker K, Brough DE . Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otol Neurotol 2007; 28: 223–231.

    Article  PubMed  Google Scholar 

  13. Zheng JL, Gao WQ . Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 2000; 3: 580–586.

    Article  CAS  PubMed  Google Scholar 

  14. Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR . Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 2008; 9: 65–89.

    Article  PubMed  Google Scholar 

  15. Izumikawa M, Batts SA, Miyazawa T, Swiderski DL, Raphael Y . Response of the flat cochlear epithelium to forced expression of Atoh1. Hear Res 2008; 240: 52–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Delay J, Pichot P, Thuillier J, Marquiset JP . Effect of aminodipropionitrile on motor behavior of the white mouse. C R Seances Soc Biol Fil 1952; 146: 533–534.

    CAS  PubMed  Google Scholar 

  17. Llorens J, Dememes D, Sans A . The behavioral syndrome caused by 3,3′-iminodipropionitrile and related nitriles in the rat is associated with degeneration of the vestibular sensory hair cells. Toxicol Appl Pharmacol 1993; 123: 199–210.

    Article  CAS  PubMed  Google Scholar 

  18. Soler-Martin C, Diez-Padrisa N, Boadas-Vaello P, Llorens J . Behavioral disturbances and hair cell loss in the inner ear following nitrile exposure in mice, guinea pigs, and frogs. Toxicol Sci 2007; 96: 123–132.

    Article  CAS  PubMed  Google Scholar 

  19. Seoane A, Dememes D, Llorens J . Relationship between insult intensity and mode of hair cell loss in the vestibular system of rats exposed to 3,3′-iminodipropionitrile. J Comp Neurol 2001; 439: 385–399.

    Article  CAS  PubMed  Google Scholar 

  20. Anniko M, Thornell LE, Gustavsson H, Virtanen I . Intermediate filaments in the newborn inner ear of the mouse. ORL J Otorhinolaryngol Relat Spec 1986; 48: 98–106.

    Article  CAS  PubMed  Google Scholar 

  21. Dechesne CJ, Scarfone E, Atger P, Desmadryl G . Neurofilament proteins form an annular superstructure in guinea-pig type I vestibular hair cells. J Neurocytol 1994; 23: 631–640.

    Article  CAS  PubMed  Google Scholar 

  22. Seoane A, Dememes D, Llorens J . Distal effects in a model of proximal axonopathy: 3,3′-iminodipropionitrile causes specific loss of neurofilaments in rat vestibular afferent endings. Acta Neuropathol 2003; 106: 458–470.

    Article  CAS  PubMed  Google Scholar 

  23. Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS . Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA 1995; 92: 9815–9819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carter RJ, Morton J, Dunnett SB . Motor coordination and balance in rodents. Curr Protoc Neurosci 2001, Chapter 8, unit 8 12.

  25. Llorens J, Dememes D . Hair cell degeneration resulting from 3,3′-iminodipropionitrile toxicity in the rat vestibular epithelia. Hear Res 1994; 76: 78–86.

    Article  CAS  PubMed  Google Scholar 

  26. Baker K, Brough DE, Staecker H . Repair of the vestibular system via adenovector delivery of Atoh1: a potential treatment for balance disorders. Adv Otorhinolaryngol 2009; 66: 52–63.

    CAS  PubMed  Google Scholar 

  27. Praetorius M, Hsu C, Baker K, Brough DE, Plinkert P, Staecker H . Adenovector-mediated hair cell regeneration is affected by promoter type. Acta Otolaryngol 2009: 1–8.

  28. Vogels R, Zuijdgeest D, van Rijnsoever R, Hartkoorn E, Damen I, de Bethune MP et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 2003; 77: 8263–8271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kahl CA, Bonnell J, Hiriyanna S, Fultz M, Nyberg-Hoffman C, Chen P et al. Potent immune responses induced by vaccine regimens with 1 a novel adenovirus vector based on rare human serotype 28. Vaccine 2010; 28: 5691–5702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brough DE, Lizonova A, Hsu C, Kulesa VA, Kovesdi I . A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions E1 and E4. J Virol 1996; 70: 6497–6501.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gall JG, Lizonova A, Ettyreddy D, McVey D, Zuber M, Kovesdi I et al. Rescue and production of vaccine and therapeutic adenovirus vectors expressing inhibitory transgenes. Mol Biotechnol 2007; 35: 263–273.

    Article  CAS  PubMed  Google Scholar 

  32. Abrahamsen K, Kong HL, Mastrangeli A, Brough DE, Lizonova A, Crystal RG et al. Characterization of a replication-defective non-subgroup C adenovirus vector. J Virol 1997; 71: 8946–8951.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Praetorius M, Baker K, Brough DE, Plinkert P, Staecker H . Pharmacodynamics of adenovector distribution within the inner ear tissues of the mouse. Hear Res 2007; 227: 53–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NIDCD R01DC008424 and NICHD HD02528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Staecker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlecker, C., Praetorius, M., Brough, D. et al. Selective atonal gene delivery improves balance function in a mouse model of vestibular disease. Gene Ther 18, 884–890 (2011). https://doi.org/10.1038/gt.2011.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.33

Keywords

This article is cited by

Search

Quick links