Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systemic delivery of scAAV9 in fetal macaques facilitates neuronal transduction of the central and peripheral nervous systems

Abstract

Correction of perinatally lethal neurogenetic diseases requires efficient transduction of several cell types within the relatively inaccessible CNS. Intravenous AAV9 delivery in mouse has achieved development stage-specific transduction of neuronal cell types, with superior neuron-targeting efficiency demonstrated in prenatal compared with postnatal recipients. Because of the clinical relevance of the non-human primate (NHP) model, we investigated the ability of AAV9 to transduce the NHP CNS following intrauterine gene therapy (IUGT). We injected two macaque fetuses at 0.9 G with 1 × 1013 vg scAAV9-CMV-eGFP through the intrahepatic continuation of the umbilical vein. Robust green fluorescent protein (GFP) expression was observed for up to 14 weeks in the majority of neurons (including nestin-positive cells), motor neurons and oligodendrocytes throughout the CNS, with a significantly lower rate of transduction in astrocytes. Photoreceptors and neuronal cell bodies in the plexiform and ganglionic retinal layers were also transduced. In the peripheral nervous system (PNS), widespread transduction of neurons was observed. Tissues harvested at 14 weeks showed substantially lower vector copy number and GFP levels, although the percentage of GFP-expressing cells remained stable. Thus, AAV9-IUGT in late gestation efficiently transduces both the CNS and PNS with neuronal predilection, of translational relevance to hereditary disorders characterized by perinatal onset of neuropathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Costantini L, Bakowska J, Breakefield X, Isacson O . Gene therapy in the CNS. Gene Therapy 2000; 7: 93–109.

    Article  CAS  PubMed  Google Scholar 

  2. Rahim AA, Wong AM, Buckley SM, Chan JK, David AL, Cooper JD et al. In utero gene transfer to the mouse nervous system. Biochem Soc Trans 2010; 38: 1489–1493.

    Article  CAS  PubMed  Google Scholar 

  3. Matzner U, Matthes F, Weigelt C, Andersson C, Eistrup C, Fogh J et al. Non-inhibitory antibodies impede lysosomal storage reduction during enzyme replacement therapy of a lysosomal storage disease. J Mol Med 2008; 86: 433–442.

    Article  CAS  PubMed  Google Scholar 

  4. Brightman M, Ishihara S, Chang L . Penetration of solutes, viruses, and cells across the blood–brain barrier. Curr Top Microbiol Immunol 1995; 202: 63–78.

    CAS  PubMed  Google Scholar 

  5. Pardridge WM . Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2002; 1: 131–139.

    Article  CAS  PubMed  Google Scholar 

  6. Ek C, Dziegielewska K, Stolp H, Saunders N . Functional effectiveness of the blood-brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J Comp Neurol 2006; 496: 13–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pastores G, Sibille A, Grabowski G . Enzyme therapy in Gaucher disease type 1: dosage efficacy and adverse effects in 33 patients treated for 6 to 24 months. Blood 1993; 82: 408–416.

    CAS  PubMed  Google Scholar 

  8. Wynn R, Wraith J, Mercer J, O’Meara A, Tylee K, Thornley M et al. Improved metabolic correction in patients with lysosomal storage disease treated with hematopoietic stem cell transplant compared with enzyme replacement therapy. J Pediatr 2009; 154: 609–611.

    Article  CAS  PubMed  Google Scholar 

  9. Krivit W, Shapiro EG, Peters C, Wagner JE, Cornu G, Kurtzberg J et al. Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med 1998; 338: 1119–1126.

    Article  CAS  PubMed  Google Scholar 

  10. Krall WJ, Challita PM, Perlmutter LS, Skelton DC, Kohn DB . Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation. Blood 1994; 83: 2737–2748.

    CAS  PubMed  Google Scholar 

  11. Peters C, Steward CG . Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant 2003; 31: 229–239.

    Article  CAS  PubMed  Google Scholar 

  12. Ringden O, Groth CG, Erikson A, Granqvist S, Mansson JE, Sparrelid E . Ten years’ experience of bone marrow transplantation for Gaucher disease. Transplantation 1995; 59: 864–870.

    Article  CAS  PubMed  Google Scholar 

  13. Kirik D, Georgievska B, Burger C, Winkler C, Muzyczka N, Mandel RJ et al. Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer. Proc Natl Acad Sci USA 2002; 99: 4708–4713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Powers JM, Moser HW . Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol 1998; 8: 101–120.

    Article  CAS  PubMed  Google Scholar 

  15. McIntyre C, Byers S, Anson DS . Correction of mucopolysaccharidosis type IIIA somatic and central nervous system pathology by lentiviral-mediated gene transfer. J Gene Med 2010; 12: 717–728.

    Article  CAS  PubMed  Google Scholar 

  16. Griffey MA, Wozniak D, Wong M, Bible E, Johnson K, Rothman SM et al. CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Mol Ther 2006; 13: 538–547.

    Article  CAS  PubMed  Google Scholar 

  17. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14: 316–327.

    Article  CAS  PubMed  Google Scholar 

  18. Penaud-Budloo M, Le Guiner C, Nowrouzi A, Toromanoff A, Cherel Y, Chenuaud P et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 2008; 82: 7875–7885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berges BK, Yellayi S, Karolewski BA, Miselis RR, Wolfe JH, Fraser NW . Widespread correction of lysosomal storage in the mucopolysaccharidosis type VII mouse brain with a herpes simplex virus type 1 vector expressing beta-glucuronidase. Mol Ther 2006; 13: 859–869.

    Article  CAS  PubMed  Google Scholar 

  20. Mandel R, Manfredsson F, Foust K, Rising A, Reimsnider S, Nash K et al. Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol Ther 2006; 13: 463–483.

    Article  CAS  PubMed  Google Scholar 

  21. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA . Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  PubMed  Google Scholar 

  22. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X . Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78: 6381–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  PubMed  Google Scholar 

  24. Rahim AA, Wong AM, Hoefer K, Buckley SM, Mattar CN, Cheng SH et al. Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB J 2011; 25: 3505–3518.

    Article  CAS  PubMed  Google Scholar 

  25. Foust K, Wang X, McGovern V, Braun L, Bevan A, Haidet A et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 2010; 28: 271–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17: 1187–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thrasher AJ, Hacein-Bey-Abina S, Gaspar HB, Blanche S, Davies EG, Parsley K et al. Failure of SCID-X1 gene therapy in older patients. Blood 2005; 105: 4255–4257.

    Article  CAS  PubMed  Google Scholar 

  28. Stewart P, Farrell C, Holash J, Elliot D, Neiman J, Resch L et al. Effect of bile duct ligation-induced liver damage on the blood–brain barrier. Can J Neurol Sci 1989; 16: 451–452.

    CAS  PubMed  Google Scholar 

  29. Wolburg H, Lippoldt A . Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 2002; 38: 323–337.

    Article  CAS  PubMed  Google Scholar 

  30. Coutelle C, Themis M, Waddington SN, Buckley SM, Gregory LG, Nivsarkar MS et al. Gene therapy progress and prospects: fetal gene therapy—first proofs of concept—some adverse effects. Gene Ther 2005; 12: 1601–1607.

    Article  CAS  PubMed  Google Scholar 

  31. Waddington SN, Kramer MG, Hernandez-Alcoceba R, Buckley SM, Themis M, Coutelle C et al. In utero gene therapy: current challenges and perspectives. Mol Ther 2005; 11: 661–676.

    Article  CAS  PubMed  Google Scholar 

  32. Karolewski BA, Wolfe JH . Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther 2006; 14: 14–24.

    Article  CAS  PubMed  Google Scholar 

  33. Mestas J, Hughes C . Of mice and not men: differences between mouse and human immunology. J Immunol 2004; 172: 2731–2738.

    Article  CAS  PubMed  Google Scholar 

  34. Holladay S, Smialowicz R . Development of the murine and human immune system: differential effects of immunotoxicants depend on time of exposure. Environ Health Perspect 2000; 108 (Suppl 3): 463–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu H, Dirosario J, Killedar S, Zaraspe K, McCarty DM . Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood–brain barrier gene delivery. Mol Ther 2011; 19: 1025–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Snyder BR, Gray SJ, Quach ET, Huang JW, Leung CH, Samulski RJ et al. Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 2011; 22: 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  37. Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 2011; 19: 1971–1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R et al. MicroRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Therapy 2011; 18: 199–209.

    Article  CAS  PubMed  Google Scholar 

  39. Pulicherla N, Shen S, Yadav S, Debbink K, Govindasamy L, Agbandje-McKenna M et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol Ther 2011; 19: 1070–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bell CL, Vandenberghe LH, Bell P, Limberis MP, Gao GP, Van Vliet K et al. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest 2011; 121: 2427–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ . Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 2011; 19: 1058–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010; 21: 704–712.

    Article  CAS  PubMed  Google Scholar 

  43. Stites D, Carr M, Fundenberg H . Ontogeny of cellular immunity in the human fetus. Development of responses to phytohaemmagglutinin and to allogeneic cells. Cell Immunol 1974; 11: 257–271.

    Article  CAS  PubMed  Google Scholar 

  44. Hendrickx A, Makori N, Peterson P . The nonhuman primate as a model of developmental immunotoxicity. Hum Exp Toxicol 2002; 21: 537–542.

    Article  CAS  PubMed  Google Scholar 

  45. Rashmi N, Phillipa K, Peter WS . A classification of pregnancy losses after invasive prenatal diagnostic procedures: an approach to allow comparison of units with a different case mix. Prenat Diagn 2003; 23: 488–492.

    Article  Google Scholar 

  46. Chan J, Kumar S, Fisk NM . First trimester embryo-fetoscopic and ultrasound-guided fetal blood sampling for ex vivo viral transduction of cultured human fetal mesenchymal stem cells. Hum Reprod 2008; 23: 2427–2437.

    Article  PubMed  Google Scholar 

  47. Rodeck CH . Fetoscopy guided by real-time ultrasound for pure fetal blood samples, fetal skin samples, and examination of the fetus in utero. Br J Obstet Gynaecol 1980; 87: 449–456.

    Article  CAS  PubMed  Google Scholar 

  48. Holladay SD, Smialowicz RJ . Development of the murine and human immune system: differential effects of immunotoxicants depend on time of exposure. Environ Health Perspect 2000; 108 (Suppl 3): 463–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG . Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005; 435: 590–597.

    Article  CAS  PubMed  Google Scholar 

  50. Mattar CN, Nathwani AC, Waddington SN, Dighe N, Kaeppel C, Nowrouzi A et al. Stable human FIX expression after 0.9 G intrauterine gene transfer of self-complementary adeno-associated viral vector 5 and 8 in macaques. Mol Ther 2011; 19: 1950–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Danzer KM, Krebs SK, Wolff M, Birk G, Hengerer B . Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology. J Neurochem 2009; 111: 192–203.

    Article  CAS  PubMed  Google Scholar 

  52. Lee HJ, Suk JE, Bae EJ, Lee JH, Paik SR, Lee SJ . Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol 2008; 40: 1835–1849.

    Article  CAS  PubMed  Google Scholar 

  53. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 2009; 106: 13010–13015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009; 11: 328–336.

    Article  CAS  PubMed  Google Scholar 

  55. Brundin P, Melki R, Kopito R . Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 2010; 11: 301–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miao CH, Nakai H, Thompson AR, Storm TA, Chiu W, Snyder RO et al. Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. J Virol 2000; 74: 3793–3803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cunningham SC, Spinoulas A, Carpenter KH, Wilcken B, Kuchel PW, Alexander IE . AAV2/8-mediated correction of OTC deficiency is robust in adult but not neonatal Spfash mice. Mol Ther 2009; 17: 1340–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang L, Bell P, Lin J, Calcedo R, Tarantal AF, Wilson JM . AAV8-mediated hepatic gene transfer in infant rhesus monkeys (Macaca mulatta). Mol Ther 2011; 19: 2012–2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gray SJ, Foti SB, Schwartz JW, Bachaboina L, Taylor-Blake B, Coleman J et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 2011; 22: 1143–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Salva MZ, Himeda CL, Tai PW, Nishiuchi E, Gregorevic P, Allen JM et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 2007; 15: 320–329.

    Article  CAS  PubMed  Google Scholar 

  61. Nakai H, Fuess S, Storm TA, Muramatsu S, Nara Y, Kay MA . Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005; 79: 214–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakai H, Thomas CE, Storm TA, Fuess S, Powell S, Wright JF . A limited number of transducible hepatocytes restricts a wide-range linear vector dose response in recombinant adeno-associated virus-mediated liver transduction. J Virol 2002; 76: 11343–11349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hahnewald R, Wegner W, Reiss J . AAV-mediated gene therapy for metabolic diseases: dosage and reapplication studies in the molybdenum cofactor deficiency model. Genet Vaccines Ther 2009; 7: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Themis M, Schneider H, Kiserud T, Cook T, Adebakin S, Jezzard S et al. Successful expression of beta-galactosidase and factor IX transgenes in fetal and neonatal sheep after ultrasound-guided percutaneous adenovirus vector administration into the umbilical vein. Gene Therapy 1999; 6: 1239–1248.

    Article  CAS  PubMed  Google Scholar 

  65. Tran ND, Porada CD, Almeida-Porada Ga, Glimp HA, Anderson WF, Zanjani ED . Induction of stable prenatal tolerance to b-galactosidase by in utero gene transfer into preimmune sheep fetuses. Blood 2001; 97: 3417–3423.

    Article  CAS  PubMed  Google Scholar 

  66. Waddington SN, Buckley SMK, Nivsarkar M, Jezzard S, Schneider H, Dahse T et al. In utero gene transfer of human factor IX to fetal mice can induce postnatal tolerance of the exogenous clotting factor. Blood 2003; 101: 1359–1366.

    Article  CAS  PubMed  Google Scholar 

  67. Sabatino DE, Mackenzie TC, Peranteau W, Edmonson S, Campagnoli C, Liu YL et al. Persistent expression of hF.IX After tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther 2007; 15: 1677–1685.

    Article  CAS  PubMed  Google Scholar 

  68. Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 2007; 15: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  69. Xie J, Xie Q, Zhang H, Ameres SL, Hung JH, Su Q et al. MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol Ther 2011; 19: 526–535.

    Article  CAS  PubMed  Google Scholar 

  70. Michalski A, Leonard JV, Taylor DS . The eye and inherited metabolic disease: a review. J R Soc Med 1988; 81: 286–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blackshaw S, Fraioli RE, Furukawa T, Cepko CL . Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 2001; 107: 579–589.

    Article  CAS  PubMed  Google Scholar 

  72. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643–650.

    Article  CAS  PubMed  Google Scholar 

  73. Kousta E, Hadjiathanasiou CG, Tolis G, Papathanasiou A . Pleiotropic genetic syndromes with developmental abnormalities associated with obesity. J Pediatr Endocrinol Metab 2009; 22: 581–592.

    Article  CAS  PubMed  Google Scholar 

  74. Zamel R, Khan R, Pollex RL, Hegele RA . Abetalipoproteinemia: two case reports and literature review. Orphanet J Rare Dis 2008; 3: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nicolini U, Nicolaidis P, Fisk NM, Tannirandorn Y, Rodeck CH . Fetal blood sampling from the intrahepatic vein: analysis of safety and clinical experience with 214 procedures. Obstet Gynecol 1990; 76: 47–53.

    CAS  PubMed  Google Scholar 

  76. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 2010; 28: 79–82.

    Article  CAS  PubMed  Google Scholar 

  77. Weatherall DJ . The Use of Non-Human Primates in Research. Academy of Medical Sciences: London, 2006.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Bio-Medical Research Council (06/121/19/450, 09/121/19/597) and National Medical Research Council (CSA/012/2009). CNM was supported by an Overseas Research Fellowship, MC and JKYC were supported by the Clinician Scientist Award (CSA/007/2009 and CSA/012/2009), National Medical Research Council, Singapore, and SNW was part-funded by a European Research grant, ‘SomaBio’. We acknowledge the assistance of Dr Bryan Ogden, Dr Darvi Mitchell, Ms Vivienne Liang, Ms Sheryl Loh and Mr CY Kiong in the care of the animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J K Y Chan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattar, C., Waddington, S., Biswas, A. et al. Systemic delivery of scAAV9 in fetal macaques facilitates neuronal transduction of the central and peripheral nervous systems. Gene Ther 20, 69–83 (2013). https://doi.org/10.1038/gt.2011.216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.216

Keywords

This article is cited by

Search

Quick links