Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

A simple detection system for adenovirus receptor expression using a telomerase-specific replication-competent adenovirus

Abstract

Adenovirus serotype 5 (Ad5) is frequently used as an effective vector for induction of therapeutic transgenes in cancer gene therapy or of tumor cell lysis in oncolytic virotherapy. Ad5 can infect target cells through binding with the coxsackie and adenovirus receptor (CAR). Thus, the infectious ability of Ad5-based vectors depends on the CAR expression level in target cells. There are conventional methods to evaluate the CAR expression level in human target cells, including flow cytometry, western blotting and immunohistochemistry. Here, we show a simple system for detection and assessment of functional CAR expression in human tumor cells, using the green fluorescent protein (GFP)-expressing telomerase-specific replication-competent adenovirus OBP-401. OBP-401 infection induced detectable GFP expression in CAR-expressing tumor cells, but not in CAR-negative tumor cells, nor in CAR-positive normal fibroblasts, 24 h after infection. OBP-401-mediated GFP expression was significantly associated with CAR expression in tumor cells. OBP-401 infection detected tumor cells with low CAR expression more efficiently than conventional methods. OBP-401 also distinguished CAR-positive tumor tissues from CAR-negative tumor and normal tissues in biopsy samples. These results suggest that GFP-expressing telomerase-specific replication-competent adenovirus is a very potent diagnostic tool for assessment of functional CAR expression in tumor cells for Ad5-based antitumor therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kanerva A, Hemminki A . Adenoviruses for treatment of cancer. Ann Med 2005; 37: 33–43.

    Article  CAS  Google Scholar 

  2. Rein DT, Breidenbach M, Curiel DT . Current developments in adenovirus-based cancer gene therapy. Future Oncol 2006; 2: 137–143.

    Article  CAS  Google Scholar 

  3. Yamamoto M, Curiel DT . Current issues and future directions of oncolytic adenoviruses. Mol Ther 2010; 18: 243–250.

    Article  CAS  Google Scholar 

  4. Clayman GL, el-Naggar AK, Lippman SM, Henderson YC, Frederick M, Merritt JA et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998; 16: 2221–2232.

    Article  CAS  Google Scholar 

  5. Swisher SG, Roth JA, Nemunaitis J, Lawrence DD, Kemp BL, Carrasco CH et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 1999; 91: 763–771.

    Article  CAS  Google Scholar 

  6. Shimada H, Matsubara H, Shiratori T, Shimizu T, Miyazaki S, Okazumi S et al. Phase I/II adenoviral p53 gene therapy for chemoradiation resistant advanced esophageal squamous cell carcinoma. Cancer Sci 2006; 97: 554–561.

    Article  CAS  Google Scholar 

  7. Fujiwara T, Tanaka N, Kanazawa S, Ohtani S, Saijo Y, Nukiwa T et al. Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer. J Clin Oncol 2006; 24: 1689–1699.

    Article  CAS  Google Scholar 

  8. Fujiwara T, Urata Y, Tanaka N . Telomerase-specific oncolytic virotherapy for human cancer with the hTERT promoter. Curr Cancer Drug Targets 2007; 7: 191–201.

    Article  CAS  Google Scholar 

  9. Pesonen S, Kangasniemi L, Hemminki A . Oncolytic adenoviruses for the treatment of human cancer: focus on translational and clinical data. Mol Pharm 2011; 8: 12–28.

    Article  CAS  Google Scholar 

  10. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  Google Scholar 

  11. Hemmi S, Geertsen R, Mezzacasa A, Peter I, Dummer R . The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998; 9: 2363–2373.

    Article  CAS  Google Scholar 

  12. Hutchin ME, Pickles RJ, Yarbrough WG . Efficiency of adenovirus-mediated gene transfer to oropharyngeal epithelial cells correlates with cellular differentiation and human coxsackie and adenovirus receptor expression. Hum Gene Ther 2000; 11: 2365–2375.

    Article  CAS  Google Scholar 

  13. You Z, Fischer DC, Tong X, Hasenburg A, Aguilar-Cordova E, Kieback DG . Coxsackievirus-adenovirus receptor expression in ovarian cancer cell lines is associated with increased adenovirus transduction efficiency and transgene expression. Cancer Gene Ther 2001; 8: 168–175.

    Article  CAS  Google Scholar 

  14. Rauen KA, Sudilovsky D, Le JL, Chew KL, Hann B, Weinberg V et al. Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: potential relevance to gene therapy. Cancer Res 2002; 62: 3812–3818.

    CAS  PubMed  Google Scholar 

  15. Kim M, Zinn KR, Barnett BG, Sumerel LA, Krasnykh V, Curiel DT et al. The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. Eur J Cancer 2002; 38: 1917–1926.

    Article  CAS  Google Scholar 

  16. Qin M, Chen S, Yu T, Escuadro B, Sharma S, Batra RK . Coxsackievirus adenovirus receptor expression predicts the efficiency of adenoviral gene transfer into non-small cell lung cancer xenografts. Clin Cancer Res 2003; 9: 4992–4999.

    CAS  PubMed  Google Scholar 

  17. Douglas JT, Kim M, Sumerel LA, Carey DE, Curiel DT . Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res 2001; 61: 813–817.

    CAS  Google Scholar 

  18. Fuxe J, Liu L, Malin S, Philipson L, Collins VP, Pettersson RF . Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts. Int J Cancer 2003; 103: 723–729.

    Article  CAS  Google Scholar 

  19. Marsee DK, Vadysirisack DD, Morrison CD, Prasad ML, Eng C, Duh QY et al. Variable expression of coxsackie-adenovirus receptor in thyroid tumors: implications for adenoviral gene therapy. Thyroid 2005; 15: 977–987.

    Article  CAS  Google Scholar 

  20. Anders M, Rosch T, Kuster K, Becker I, Hofler H, Stein HJ et al. Expression and function of the coxsackie and adenovirus receptor in Barrett's esophagus and associated neoplasia. Cancer Gene Ther 2009; 16: 508–515.

    Article  CAS  Google Scholar 

  21. Korn WM, Macal M, Christian C, Lacher MD, McMillan A, Rauen KA et al. Expression of the coxsackievirus- and adenovirus receptor in gastrointestinal cancer correlates with tumor differentiation. Cancer Gene Ther 2006; 13: 792–797.

    Article  CAS  Google Scholar 

  22. Gu W, Ogose A, Kawashima H, Ito M, Ito T, Matsuba A et al. High-level expression of the coxsackievirus and adenovirus receptor messenger RNA in osteosarcoma, Ewing's sarcoma, and benign neurogenic tumors among musculoskeletal tumors. Clin Cancer Res 2004; 10: 3831–3838.

    Article  CAS  Google Scholar 

  23. Kawashima H, Ogose A, Yoshizawa T, Kuwano R, Hotta Y, Hotta T et al. Expression of the coxsackievirus and adenovirus receptor in musculoskeletal tumors and mesenchymal tissues: efficacy of adenoviral gene therapy for osteosarcoma. Cancer Sci 2003; 94: 70–75.

    Article  CAS  Google Scholar 

  24. Rice AM, Currier MA, Adams LC, Bharatan NS, Collins MH, Snyder JD et al. Ewing sarcoma family of tumors express adenovirus receptors and are susceptible to adenovirus-mediated oncolysis. J Pediatr Hematol Oncol 2002; 24: 527–533.

    Article  Google Scholar 

  25. Matsumoto K, Shariat SF, Ayala GE, Rauen KA, Lerner SP . Loss of coxsackie and adenovirus receptor expression is associated with features of aggressive bladder cancer. Urology 2005; 66: 441–446.

    Article  Google Scholar 

  26. Anders M, Vieth M, Rocken C, Ebert M, Pross M, Gretschel S et al. Loss of the coxsackie and adenovirus receptor contributes to gastric cancer progression. Br J Cancer 2009; 100: 352–359.

    Article  CAS  Google Scholar 

  27. Yamamoto S, Yoshida Y, Aoyagi M, Ohno K, Hirakawa K, Hamada H . Reduced transduction efficiency of adenoviral vectors expressing human p53 gene by repeated transduction into glioma cells in vitro. Clin Cancer Res 2002; 8: 913–921.

    CAS  PubMed  Google Scholar 

  28. Tango Y, Taki M, Shirakiya Y, Ohtani S, Tokunaga N, Tsunemitsu Y et al. Late resistance to adenoviral p53-mediated apoptosis caused by decreased expression of Coxsackie-adenovirus receptors in human lung cancer cells. Cancer Sci 2004; 95: 459–463.

    Article  CAS  Google Scholar 

  29. Sasaki T, Tazawa H, Hasei J, Kunisada T, Yoshida A, Hashimoto Y et al. Preclinical evaluation of telomerase-specific oncolytic virotherapy for human bone and soft tissue sarcomas. Clin Cancer Res 2011; 17: 1828–1838.

    Article  CAS  Google Scholar 

  30. Kawashima T, Kagawa S, Kobayashi N, Shirakiya Y, Umeoka T, Teraishi F et al. Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 2004; 10 (1 Pt 1): 285–292.

    Article  CAS  Google Scholar 

  31. Hashimoto Y, Watanabe Y, Shirakiya Y, Uno F, Kagawa S, Kawamura H et al. Establishment of biological and pharmacokinetic assays of telomerase-specific replication-selective adenovirus. Cancer Sci 2008; 99: 385–390.

    Article  CAS  Google Scholar 

  32. Kishimoto H, Kojima T, Watanabe Y, Kagawa S, Fujiwara T, Uno F et al. In vivo imaging of lymph node metastasis with telomerase-specific replication-selective adenovirus. Nat Med 2006; 12: 1213–1219.

    Article  CAS  Google Scholar 

  33. Kishimoto H, Urata Y, Tanaka N, Fujiwara T, Hoffman RM . Selective metastatic tumor labeling with green fluorescent protein and killing by systemic administration of telomerase-dependent adenoviruses. Mol Cancer Ther 2009; 8: 3001–3008.

    Article  CAS  Google Scholar 

  34. Kojima T, Hashimoto Y, Watanabe Y, Kagawa S, Uno F, Kuroda S et al. A simple biological imaging system for detecting viable human circulating tumor cells. J Clin Invest 2009; 119: 3172–3181.

    Article  CAS  Google Scholar 

  35. Kishimoto H, Zhao M, Hayashi K, Urata Y, Tanaka N, Fujiwara T et al. In vivo internal tumor illumination by telomerase-dependent adenoviral GFP for precise surgical navigation. Proc Natl Acad Sci USA 2009; 106: 14514–14517.

    Article  CAS  Google Scholar 

  36. Feero WG, Rosenblatt JD, Huard J, Watkins SC, Epperly M, Clemens PR et al. Viral gene delivery to skeletal muscle: insights on maturation-dependent loss of fiber infectivity for adenovirus and herpes simplex type 1 viral vectors. Hum Gene Ther 1997; 8: 371–380.

    Article  CAS  Google Scholar 

  37. Hoffman RM . The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 2005; 5: 796–806.

    Article  CAS  Google Scholar 

  38. Hoffman RM, Yang M . Subcellular imaging in the live mouse. Nat Protoc 2006; 1: 775–782.

    Article  CAS  Google Scholar 

  39. Shay JW, Bacchetti S . A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787–791.

    Article  CAS  Google Scholar 

  40. Marsman WA, Buskens CJ, Wesseling JG, Offerhaus GJ, Bergman JJ, Tytgat GN et al. Gene therapy for esophageal carcinoma: the use of an explant model to test adenoviral vectors ex vivo. Cancer Gene Ther 2004; 11: 289–296.

    Article  CAS  Google Scholar 

  41. Wang Y, Thorne S, Hannock J, Francis J, Au T, Reid T et al. A novel assay to assess primary human cancer infectibility by replication-selective oncolytic adenoviruses. Clin Cancer Res 2005; 11: 351–360.

    CAS  PubMed  Google Scholar 

  42. Zeimet AG, Muller-Holzner E, Schuler A, Hartung G, Berger J, Hermann M et al. Determination of molecules regulating gene delivery using adenoviral vectors in ovarian carcinomas. Gene Therapy 2002; 9: 1093–1100.

    Article  CAS  Google Scholar 

  43. Kuster K, Koschel A, Rohwer N, Fischer A, Wiedenmann B, Anders M . Downregulation of the coxsackie and adenovirus receptor in cancer cells by hypoxia depends on HIF-1alpha. Cancer Gene Ther 2010; 17: 141–146.

    Article  CAS  Google Scholar 

  44. Seidman MA, Hogan SM, Wendland RL, Worgall S, Crystal RG, Leopold PL . Variation in adenovirus receptor expression and adenovirus vector-mediated transgene expression at defined stages of the cell cycle. Mol Ther 2001; 4: 13–21.

    Article  CAS  Google Scholar 

  45. Hotta T, Motoyama T, Watanabe H . Three human osteosarcoma cell lines exhibiting different phenotypic expressions. Acta Pathol Jpn 1992; 42: 595–603.

    CAS  PubMed  Google Scholar 

  46. Kawashima H, Ogose A, Gu W, Nishio J, Kudo N, Kondo N et al. Establishment and characterization of a novel myxofibrosarcoma cell line. Cancer Genet Cytogenet 2005; 161: 28–35.

    Article  CAS  Google Scholar 

  47. Kunisada T, Miyazaki M, Mihara K, Gao C, Kawai A, Inoue H et al. A new human chondrosarcoma cell line (OUMS-27) that maintains chondrocytic differentiation. Int J Cancer 1998; 77: 854–859.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Satoru Kyo (Kanazawa University) for providing the OST cells; Dr Hiroyuki Kawashima (Niigata University) for providing the NOS-10 and NMFH-1 cells; and Tomoko Sueishi for her excellent technical support. This study was supported by grants-in-Aid from the Ministry of Education, Science and Culture, Japan and grants from the Ministry of Health and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Fujiwara.

Ethics declarations

Competing interests

Y Urata is an employee of Oncolys BioPharma, Inc., the manufacturer of OBP-401 (Telomescan). The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, T., Tazawa, H., Hasei, J. et al. A simple detection system for adenovirus receptor expression using a telomerase-specific replication-competent adenovirus. Gene Ther 20, 112–118 (2013). https://doi.org/10.1038/gt.2011.213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.213

Keywords

This article is cited by

Search

Quick links