Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Non-myeloablative transplantation of bone marrow expressing self-antigen establishes peripheral tolerance and completely prevents autoimmunity in mice

Abstract

Myeloablative transplantation of bone marrow (BM) engineered to express myelin oligodendrocyte glycoprotein (MOG) establishes central intrathymic tolerance and completely prevents MOG-induced experimental autoimmune encephalomyelitis (EAE) in mice. Here we asked whether non-myeloablative transplantation of MOG expressing BM (pMOG-bone marrow transplantation (BMT)) can also provide the same protection. Using stepwise reduction of irradiation doses, 275 cGy irradiation with pMOG-BMT protected 100% of mice from EAE development even with two subsequent re-challenge with MOG. Irradiation doses <275 cGy produced dose-dependent partial protection with significant disease protection still evident at 50 cGy. Splenocytes from 275 cGy recipients proliferated to MOG stimulation in vitro, indicating that MOG-reactive cells are present in the periphery but failed to induce disease. MOG-stimulated splenocytes produced little or no interleukin-17, interferon-γ, granulocyte-monocyte colony stimulating factor and tumor necrosis factor-α compared with EAE control. Adoptive transfer of CD4 T cells from EAE-resistant mice into Rag2−/− mice devoid of MOG expression resulted in MOG-induced EAE in 74% of mice. Treatment of EAE-resistant mice with anti-programmed death 1 (PD-1) monoclonal antibody-induced EAE in 67% of mice. We conclude that non-myeloablative transplantation of self-antigen expressing BM induces robust peripheral tolerance that completely prevented EAE development. Our findings implicate clonal anergy and the PD-1 pathway in the maintenance of peripheral tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Saiz A, Blanco Y, Berenguer J, Gomez M, Carreras E, Arbizu T et al. Clinical outcome 6 years after autologous hematopoietic stem cell transplantation in multiple sclerosis. Neurologia 2008; 23: 405–407.

    CAS  Google Scholar 

  2. Passweg J, Tyndall A . Autologous stem cell transplantation in autoimmune diseases. Semin Hematol 2007; 44: 278–285.

    Article  Google Scholar 

  3. Blanco Y, Saiz A, Carreras E, Graus F . Autologous haematopoietic-stem-cell transplantation for multiple sclerosis. Lancet Neurol 2005; 4: 54–63.

    Article  Google Scholar 

  4. Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 2009; 8: 244–253.

    Article  CAS  Google Scholar 

  5. Capello E, Vuolo L, Gualandi F, Van Lint MT, Roccatagliata L, Bonzano L et al. Autologous haematopoietic stem-cell transplantation in multiple sclerosis: benefits and risks. Neurol Sci 2009; 30 (Suppl 2): S175–S177.

    Article  Google Scholar 

  6. Chan J, Ban EJ, Chun KH, Wang S, Backstrom BT, Bernard CC et al. Transplantation of bone marrow transduced to express self-antigen establishes deletional tolerance and permanently remits autoimmune disease. J Immunol 2008; 181: 7571–7580.

    Article  CAS  Google Scholar 

  7. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  8. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009; 360: 447–458.

    Article  CAS  PubMed  Google Scholar 

  9. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA et al. Stem-cell gene therapy for the Wiskott-Aldrich Syndrome. N Engl J Med 2010; 363: 1918–1927.

    Article  CAS  PubMed  Google Scholar 

  10. Mancardi G, Saccardi R . Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol 2008; 7: 626–636.

    Article  Google Scholar 

  11. Hough RE, Snowden JA, Wulffraat NM . Haemopoietic stem cell transplantation in autoimmune diseases: a European perspective. Br J Haematol 2005; 128: 432–459.

    Article  CAS  Google Scholar 

  12. Fassas A, Mancardi GL . Autologous hemopoietic stem cell transplantation for multiple sclerosis: is it worthwile? Autoimmunity 2008; 41: 601–610.

    Article  CAS  Google Scholar 

  13. Van Wijmeersch B, Sprangers B, Dubois B, Waer M, Billiau AD . Autologous and allogeneic hematopoietic stem cell transplantation for multiple sclerosis: perspective on mechanisms of action. J Neuroimmunol 2008; 197: 89–98.

    Article  CAS  Google Scholar 

  14. Farge D, Labopin M, Tyndall A, Fassas A, Mancardi GL, Van Laar J et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica 2010; 95: 284–292.

    Article  Google Scholar 

  15. Wekerle T, Sykes M . Mixed chimerism and transplantation tolerance. Annu Rev Med 2001; 52: 353–370.

    Article  CAS  Google Scholar 

  16. Tian C, Bagley J, Cretin N, Seth N, Wucherpfennig KW, Iacomini J . Prevention of type 1 diabetes by gene therapy. J Clin Invest 2004; 114: 969–978.

    Article  CAS  PubMed  Google Scholar 

  17. Bonilla WV, Geuking MB, Aichele P, Ludewig B, Hengartner H, Zinkernagel RM . Microchimerism maintains deletion of the donor cell-specific CD8+ T cell repertoire. J Clin Invest 2006; 116: 156–162.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T . Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 1997; 186: 1677–1687.

    Article  CAS  PubMed  Google Scholar 

  19. Fife BT, Bluestone JA . Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008; 224: 166–182.

    Article  CAS  Google Scholar 

  20. Keir ME, Butte MJ, Freeman GJ, Sharpe AH . PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677–704.

    Article  CAS  Google Scholar 

  21. Chan J, Clements W, Field J, Nasa Z, Lock P, Yap F et al. Transplantation of bone marrow genetically engineered to express proinsulin II protects against autoimmune insulitis in NOD mice. J Gene Med 2006; 8: 1281–1290.

    Article  CAS  Google Scholar 

  22. Bagley J, Tian C, Sachs DH, Iacomini J . Induction of T-cell tolerance to an MHC class I alloantigen by gene therapy. Blood 2002; 99: 4394–4399.

    Article  CAS  Google Scholar 

  23. Xu H, Wawrousek EF, Redmond TM, Nickerson JM, Wiggert B, Chan CC et al. Transgenic expression of an immunologically privileged retinal antigen extraocularly enhances self tolerance and abrogates susceptibility to autoimmune uveitis. Eur J Immunol 2000; 30: 272–278.

    Article  CAS  Google Scholar 

  24. Baranyi U, Linhart B, Pilat N, Gattringer M, Bagley J, Muehlbacher F et al. Tolerization of a type I allergic immune response through transplantation of genetically modified hematopoietic stem cells. J Immunol 2008; 180: 8168–8175.

    Article  CAS  PubMed  Google Scholar 

  25. Eixarch H, Espejo C, Gomez A, Mansilla MJ, Castillo M, Mildner A et al. Tolerance induction in experimental autoimmune encephalomyelitis using non-myeloablative hematopoietic gene therapy with autoantigen. Mol Ther 2009; 17: 897–905.

    Article  CAS  PubMed  Google Scholar 

  26. Xu B, Haviernik P, Wolfraim LA, Bunting KD, Scott DW . Bone marrow transplantation combined with gene therapy to induce antigen-specific tolerance and ameliorate EAE. Mol Ther 2006; 13: 42–48.

    Article  Google Scholar 

  27. Stangel M . Multiple sclerosis: hematopoietic stem cell transplantation: hope and hype. Nat Rev Neurol 2009; 5: 300–302.

    Article  Google Scholar 

  28. Hare KJ, Pongracz J, Jenkinson EJ, Anderson G . Modeling TCR signaling complex formation in positive selection. J Immunol 2003; 171: 2825–2831.

    Article  CAS  Google Scholar 

  29. Brocker T, Riedinger M, Karjalainen K . Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 1997; 185: 541–550.

    Article  CAS  PubMed  Google Scholar 

  30. Jenkinson EJ, Anderson G, Moore NC, Smith CA, Owen JJ . Positive selection by purified MHC class II+ thymic epithelial cells in vitro: costimulatory signals mediated by B7 are not involved. Dev Immunol 1994; 3: 265–271.

    Article  CAS  PubMed  Google Scholar 

  31. Steinman RM, Hawiger D, Nussenzweig MC . Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21: 685–711.

    Article  CAS  Google Scholar 

  32. Zanoni I, Granucci F . The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity 2010; 44: 23–32.

    Article  Google Scholar 

  33. Werner-Klein M, Dresch C, Marconi P, Brocker T . Transcriptional targeting of B cells for induction of peripheral CD8 T cell tolerance. J Immunol 2007; 178: 7738–7746.

    Article  CAS  Google Scholar 

  34. Song L, Wang J, Wang R, Yu M, Sun Y, Han G et al. Retroviral delivery of GAD-IgG fusion construct induces tolerance and modulates diabetes: a role for CD4+ regulatory T cells and TGF-beta? Gene Ther 2004; 11: 1487–1496.

    Article  CAS  Google Scholar 

  35. Melo ME, Qian J, El-Amine M, Agarwal RK, Soukhareva N, Kang Y et al. Gene transfer of Ig-fusion proteins into B cells prevents and treats autoimmune diseases. J Immunol 2002; 168: 4788–4795.

    Article  CAS  Google Scholar 

  36. Agarwal RK, Kang Y, Zambidis E, Scott DW, Chan CC, Caspi RR . Retroviral gene therapy with an immunoglobulin-antigen fusion construct protects from experimental autoimmune uveitis. J Clin Invest 2000; 106: 245–252.

    Article  CAS  PubMed  Google Scholar 

  37. Pape KA, Merica R, Mondino A, Khoruts A, Jenkins MK . Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J Immunol 1998; 160: 4719–4729.

    CAS  Google Scholar 

  38. Tian C, Bagley J, Iacomini J . Persistence of antigen is required to maintain transplantation tolerance induced by genetic modification of bone marrow stem cells. Am J Transplant 2006; 6: 2202–2207.

    Article  CAS  Google Scholar 

  39. Tanchot C, Barber DL, Chiodetti L, Schwartz RH . Adaptive tolerance of CD4+ T cells in vivo: multiple thresholds in response to a constant level of antigen presentation. J Immunol 2001; 167: 2030–2039.

    Article  CAS  Google Scholar 

  40. Rocha B, Tanchot C, Von Boehmer H . Clonal anergy blocks in vivo growth of mature T cells and can be reversed in the absence of antigen. J Exp Med 1993; 177: 1517–1521.

    Article  CAS  Google Scholar 

  41. McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med 2001; 194: 873–882.

    Article  CAS  PubMed  Google Scholar 

  42. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM . Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24: 677–688.

    Article  CAS  Google Scholar 

  43. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201: 233–240.

    Article  CAS  PubMed  Google Scholar 

  44. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM . Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 2008; 14: 337–342.

    Article  CAS  PubMed  Google Scholar 

  45. Hofstetter HH, Karulin AY, Forsthuber TG, Ott PA, Tary-Lehmann M, Lehmann PV . The cytokine signature of MOG-specific CD4 cells in the EAE of C57BL/6 mice. J Neuroimmunol 2005; 170: 105–114.

    Article  CAS  Google Scholar 

  46. Pape KA, Khoruts A, Ingulli E, Mondino A, Merica R, Jenkins MK . Antigen-specific CD4+ T cells that survive after the induction of peripheral tolerance possess an intrinsic lymphokine production defect. Novartis Found Symp 1998; 215: 103–113; discussion 113–109, 186–190.

    CAS  Google Scholar 

  47. Nishimura H, Nose M, Hiai H, Minato N, Honjo T . Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11: 141–151.

    Article  CAS  Google Scholar 

  48. Liston A, Gray DH, Lesage S, Fletcher AL, Wilson J, Webster KE et al. Gene dosage—limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 2004; 200: 1015–1026.

    Article  CAS  PubMed  Google Scholar 

  49. Ikehara S, Kawamura M, Takao F, Inaba M, Yasumizu R, Than S et al. Organ-specific and systemic autoimmune diseases originate from defects in hematopoietic stem cells. Proc Natl Acad Sci USA 1990; 87: 8341–8344.

    Article  CAS  Google Scholar 

  50. van Bekkum DW . Experimental basis of hematopoietic stem cell transplantation for treatment of autoimmune diseases. J Leukoc Biol 2002; 72: 609–620.

    CAS  Google Scholar 

  51. van Bekkum DW . Stem cell transplantation in experimental models of autoimmune disease. J Clin Immunol 2000; 20: 10–16.

    Article  CAS  Google Scholar 

  52. Chan J, Ban EJ, Chun KH, Wang S, McQualter JL, Bernard CC et al. Methylprednisolone induces reversible clinical and pathological remission and loss of lymphocyte reactivity to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. Autoimmunity 2008; 41: 405–413.

    Article  CAS  Google Scholar 

  53. Yamazaki T, Akiba H, Koyanagi A, Azuma M, Yagita H, Okumura K . Blockade of B7-H1 on macrophages suppresses CD4+ T cell proliferation by augmenting IFN-gamma-induced nitric oxide production. J Immunol 2005; 175: 1586–1592.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Chan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, H., Oh, D., Chan, S. et al. Non-myeloablative transplantation of bone marrow expressing self-antigen establishes peripheral tolerance and completely prevents autoimmunity in mice. Gene Ther 19, 1075–1084 (2012). https://doi.org/10.1038/gt.2011.179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.179

Keywords

This article is cited by

Search

Quick links