Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The oncolytic adenovirus AdΔΔ enhances selective cancer cell killing in combination with DNA-damaging drugs in pancreatic cancer models

Abstract

Pancreatic adenocarcinomas are aggressive and frequently develop resistance to all current therapies. Replication-selective adenoviruses can overcome resistance to chemotherapeutics through their sensitizing effects on drug-induced cell killing. We previously found that adenovirus deleted in the anti-apoptotic E1B19K gene enhanced gemcitabine-induced apoptotis. Here we demonstrate that our engineered double-deleted AdΔΔ mutant (deleted in the pRb-binding E1ACR2 region and E1B19K) selectively replicates and enhances cell killing in combination with DNA-damaging cytotoxic drugs in pancreatic cancer cells. Combinations of AdΔΔ with gemcitabine, irinotecan or cisplatin resulted in two- to fourfold decreases in EC50 (half maximal effective concentration) values and was more efficent than similar combinations with wild-type virus, the dl1520 (ONYX-015) and dl922-947 mutants. AdΔΔ replication was impaired in normal bronchial human epithelial cells and did not sensitize the cells to drugs. Gemcitabine-insensitive AsPC-1, BxPC-3 and PANC-1 cells were efficiently killed by irinotecan in combination with AdΔΔ. Suboptimal doses of AdΔΔ and gemcitabine significantly prolonged time to tumor progression in two human pancreatic tumor xenograft in vivo models, PT45 and SUIT-2. We conclude that AdΔΔ has low toxicity to normal cells while potently sensitizing pancreatic cancer cells to DNA-damaging drugs, and holds promise as an improved therapeutic strategy for pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.

    Article  PubMed  Google Scholar 

  2. Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 2007; 297: 267–277.

    Article  CAS  PubMed  Google Scholar 

  3. Parato KA, Senger D, Forsyth PA, Bell JC . Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 2005; 5: 965–976.

    Article  CAS  PubMed  Google Scholar 

  4. Aghi M, Martuza RL . Oncolytic viral therapies—the clinical experience. Oncogene 2005; 24: 7802–7816.

    Article  CAS  PubMed  Google Scholar 

  5. Dorer DE, Nettelbeck DM . Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliv Rev 2009; 61: 554–571.

    Article  CAS  PubMed  Google Scholar 

  6. Liu TC, Galanis E, Kirn D . Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 2007; 4: 101–117.

    Article  CAS  PubMed  Google Scholar 

  7. Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, van Ummersen L et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther 2006; 14: 107–117.

    Article  CAS  PubMed  Google Scholar 

  8. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  9. Garber K . China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 2006; 98: 298–300.

    Article  PubMed  Google Scholar 

  10. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6: 611–623.

    Article  PubMed  Google Scholar 

  11. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Therapy 2001; 8: 89–98.

    Article  CAS  PubMed  Google Scholar 

  12. Hamid O, Varterasian ML, Wadler S, Hecht JR, Benson III A, Galanis E et al. Phase II trial of intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol 2003; 21: 1498–1504.

    Article  CAS  PubMed  Google Scholar 

  13. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L et al. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  14. Galanis E, Okuno SH, Nascimento AG, Lewis BD, Lee RA, Oliveira AM et al. Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Therapy 2005; 12: 437–445.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar S, Gao L, Yeagy B, Reid T . Virus combinations and chemotherapy for the treatment of human cancers. Curr Opin Mol Ther 2008; 10: 371–379.

    PubMed  Google Scholar 

  16. Hecht JR, Bedford R, Abbruzzese JL, Lahoti S, Reid TR, Soetikno RM et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 2003; 9: 555–561.

    CAS  PubMed  Google Scholar 

  17. Mulvihill S, Warren R, Venook A, Adler A, Randlev B, Heise C et al. Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Therapy 2001; 8: 308–315.

    Article  CAS  PubMed  Google Scholar 

  18. O’Shea CC, Choi S, McCormick F, Stokoe D . Adenovirus overrides cellular checkpoints for protein translation. Cell Cycle 2005; 4: 883–888.

    Article  PubMed  Google Scholar 

  19. Wang Y, Hallden G, Hill R, Anand A, Liu TC, Francis J et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol 2003; 21: 1328–1335.

    Article  CAS  PubMed  Google Scholar 

  20. Fulci G, Dmitrieva N, Gianni D, Fontana EJ, Pan X, Lu Y et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res 2007; 67: 9398–9406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  22. Page JG, Tian B, Schweikart K, Tomaszewski J, Harris R, Broadt T et al. Identifying the safety profile of a novel infectivity-enhanced conditionally replicative adenovirus, Ad5-delta24-RGD, in anticipation of a phase I trial for recurrent ovarian cancer. Am J Obstet Gynecol 2007; 196: 389. e381-389; discussion 389 e389-310.

    Article  PubMed  Google Scholar 

  23. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  PubMed  Google Scholar 

  24. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR et al. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 2001; 439: 798–802.

    Article  CAS  PubMed  Google Scholar 

  25. Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 1997; 57: 3126–3130.

    CAS  PubMed  Google Scholar 

  26. Raki M, Sarkioja M, Desmond RA, Chen DT, Butzow R, Hemminki A et al. Oncolytic adenovirus Ad5/3-delta24 and chemotherapy for treatment of orthotopic ovarian cancer. Gynecol Oncol 2008; 108: 166–172.

    Article  CAS  PubMed  Google Scholar 

  27. Lockley M, Fernandez M, Wang Y, Li NF, Conroy S, Lemoine N et al. Activity of the adenoviral E1A deletion mutant dl922-947 in ovarian cancer: comparison with E1A wild-type viruses, bioluminescence monitoring, and intraperitoneal delivery in icodextrin. Cancer Res 2006; 66: 989–998.

    Article  CAS  PubMed  Google Scholar 

  28. Liu TC, Hallden G, Wang Y, Brooks G, Francis J, Lemoine N et al. An E1B-19 kDa gene deletion mutant adenovirus demonstrates tumor necrosis factor-enhanced cancer selectivity and enhanced oncolytic potency. Mol Ther 2004; 9: 786–803.

    Article  CAS  PubMed  Google Scholar 

  29. Liu TC, Wang Y, Hallden G, Brooks G, Francis J, Lemoine NR et al. Functional interactions of antiapoptotic proteins and tumor necrosis factor in the context of a replication-competent adenovirus. Gene Therapy 2005; 12: 1333–1346.

    Article  CAS  PubMed  Google Scholar 

  30. Leitner S, Sweeney K, Oberg D, Davies D, Miranda E, Lemoine NR et al. Oncolytic adenoviral mutants with E1B19K gene deletions enhance gemcitabine-induced apoptosis in pancreatic carcinoma cells and anti-tumor efficacy in vivo. Clin Cancer Res 2009; 15: 1730–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oberg D, Yanover E, Sweeney K, Adam V, Costas C, Lemoine NR et al. Improved potency and selectivity of an oncolytic E1ACR2 and E1B19K deleted adenoviral mutant (AdΔΔ) in prostate and pancreatic cancers. Clin Canc Res 2010; 16: 541–553.

    Article  CAS  Google Scholar 

  32. Lipton A, Campbell-Baird C, Witters L, Harvey H, Ali S . Phase II trial of gemcitabine, irinotecan, and celecoxib in patients with advanced pancreatic cancer. J Clin Gastroentero 2010l; 44: 286–288.

    Article  CAS  Google Scholar 

  33. Sun W, Metz JM, Gallagher M, O'Dwyer PJ, Giantonio B, Whittington R et al. Two phase I studies of concurrent radiation therapy with continuous-infusion 5-fluorouracil plus epirubicin, and either cisplatin or irinotecan for locally advanced upper gastrointestinal adenocarcinomas. Cancer Chemother Pharmacol 2011; 67: 621–627.

    Article  CAS  PubMed  Google Scholar 

  34. Yoo C, Hwang JY, Kim JE, Kim TW, Lee JS, Park DH et al. A randomised phase II study of modified FOLFIRI.3 vs modified FOLFOX as second-line therapy in patients with gemciabine-refractory advanced pancreatic cancer. Br J Cancer 2009; 101: 1658–1663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sundararajan R, Cuconati A, Nelson D, White E . Tumor necrosis factor-alpha induces Bax-Bak interaction and apoptosis, which is inhibited by adenovirus E1B 19K. J Biol Chem 2001; 276: 45120–45127.

    Article  CAS  PubMed  Google Scholar 

  36. Sundararajan R, White E . E1B 19K blocks Bax oligomerization and tumor necrosis factor alpha-mediated apoptosis. J Virol 2001; 75: 7506–7516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bazan-Peregrino M, Carlisle RC, Hernandez-Alcoceba R, Iggo R, Homicsko K, Fisher KD et al. Comparison of molecular strategies for breast cancer virotherapy using oncolytic adenovirus. Hum Gene Therapy 2008; 19: 873–886.

    Article  CAS  Google Scholar 

  38. Radhakrishnan S, Miranda E, Ekblad M, Holford A, Pizarro MT, Lemoine NR et al. Efficacy of oncolytic mutants targeting pRb and p53 pathways is synergistically enhanced when combined with cytotoxic drugs in prostate cancer cells and tumor xenografts. Hum Gene Ther 2010; 21: 1311–1325.

    Article  CAS  PubMed  Google Scholar 

  39. Raki M, Kanerva A, Ristimaki A, Desmond RA, Chen DT, Ranki T et al. Combination of gemcitabine and Ad5/3-Delta24, a tropism modified conditionally replicating adenovirus, for the treatment of ovarian cancer. Gene Therapy 2005; 12: 1198–1205.

    Article  CAS  PubMed  Google Scholar 

  40. Gomez-Manzano C, Alonso MM, Yung WK, McCormick F, Curiel DT, Lang FF et al. Delta-24 increases the expression and activity of topoisomerase I and enhances the antiglioma effect of irinotecan. Clin Cancer Res 2006; 12: 556–562.

    Article  CAS  PubMed  Google Scholar 

  41. Hamacher R, Schmid RM, Saur D, Schneider G . Apoptotic pathways in pancreatic ductal adenocarcinoma. Mol Cancer 2008; 7: 64.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yu DC, Chen Y, Dilley J, Li Y, Embry M, Zhang H et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res 2001; 61: 517–525.

    CAS  PubMed  Google Scholar 

  43. Conrad C, Miller CR, Ji Y, Gomez-Manzano C, Bharara S, McMurray JS et al. Delta24-hyCD adenovirus suppresses glioma growth in vivo by combining oncolysis and chemosensitization. Cancer Gene Ther 2005; 12: 284–294.

    Article  CAS  PubMed  Google Scholar 

  44. Cantore M, Rabbi C, Fiorentini G, Oliani C, Zamagni D, Iacono C et al. Combined irinotecan and oxaliplatin in patients with advanced pre-treated pancreatic cancer. Oncology 2004; 67: 93–97.

    Article  CAS  PubMed  Google Scholar 

  45. Cherubini G, Petouchoff T, Grossi M, Piersanti S, Cundari E, Saggio I . E1B55K-deleted adenovirus (ONYX-015) overrides G1/S and G2/M checkpoints and causes mitotic catastrophe and endoreduplication in p53-proficient normal cells. Cell Cycle 2006; 5: 2244–2252.

    Article  CAS  PubMed  Google Scholar 

  46. Redston MS, Caldas C, Seymour AB, Hruban RH, da Costa L, Yeo CJ, Kern SE . p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 1994; 54: 3025–3033.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gary Martin and colleagues at Clare Hall (Cancer Research UK) for excellent experimental assistance; Keyur Trivedi and Mohammed Ikram (Centre for Molecular Oncology and Imaging, Barts Cancer Institute) for immunohistochemistry; Derek Davies (Cancer research UK) for cell cycle expertize; Daniel Öberg (Centre for Molecular Oncology and Imaging) and Ian Hart for insightful discussions (Tumour Biology, Barts Cancer Institute). This study was supported by grants from the CORE Digestive Cancer Campaign, Cancer Research UK (C633-A6253/A6251 programme grant) and Barts & The London Charity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Halldén.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherubini, G., Kallin, C., Mozetic, A. et al. The oncolytic adenovirus AdΔΔ enhances selective cancer cell killing in combination with DNA-damaging drugs in pancreatic cancer models. Gene Ther 18, 1157–1165 (2011). https://doi.org/10.1038/gt.2011.141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.141

Keywords

This article is cited by

Search

Quick links