Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mtb32 is a promising tuberculosis antigen for DNA vaccination in pre- and post-exposure mouse models

Abstract

Identification of antigens that provide protective immunity via prophylactic and therapeutic vaccination against Mycobacterium tuberculosis is critical for the development of subunit vaccines for tuberculosis (TB). In this study, we performed a head-to-head comparison of seven well-known TB antigens delivered by DNA vaccine, and evaluated their respective immunogenicities and protective efficacies in pre- and post-exposure mouse models. All TB antigens were designed as a chimeric fusion with Flt3-L to enhance antigen-specific T-cell immunity upon vaccination. Prophylactic vaccination with the Flt3L (F)-Mtb32 DNA vaccine elicited significant protection in both the spleen and lungs against M. tuberculosis challenge, comparable to the Bacillus Calmette-Guerin vaccine. F-Ag85A and F-Mtb32 DNA vaccines, in combination with chemotherapy, reduced the bacterial burden to undetectable levels in the lungs of all mice infected with M. tuberculosis. These data collectively indicate that the F-Mtb32 DNA vaccine confers the most efficient protective immunity that suppresses bacterial growth in the active or latent status of M. tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. World Health Organization. Global Tuberculosis Control-Surveillance, Planning, Financing, WHO Reports, 1. World Health Organization: Geneva, Switzerland, 2009.

  2. Brewer TF . Preventing tuberculosis with bacillus Calmette-Guerin vaccine: a meta-analysis of the literature. Clin Infect Dis 2000; 31 (Suppl 3): S64–S67.

    Article  PubMed  Google Scholar 

  3. Fine PE . Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995; 346: 1339–1345.

    Article  CAS  PubMed  Google Scholar 

  4. Andersen P, Doherty TM . TB subunit vaccines—putting the pieces together. Microbes Infect 2005; 7: 911–921.

    Article  CAS  PubMed  Google Scholar 

  5. Bertholet S, Ireton GC, Kahn M, Guderian J, Mohamath R, Stride N et al. Identification of human T-cell antigens for the development of vaccines against Mycobacterium tuberculosis. J Immunol 2008; 181: 7948–7957.

    Article  CAS  PubMed  Google Scholar 

  6. Lowrie DB . DNA vaccines for therapy of tuberculosis: where are we now? Vaccine 2006; 24: 1983–1989.

    Article  CAS  PubMed  Google Scholar 

  7. Ulmer JB, Liu MA, Montgomery DL, Yawman AM, Deck RR, DeWitt CM et al. Expression and immunogenicity of Mycobacterium tuberculosis antigen 85 by DNA vaccination. Vaccine 1997; 15: 792–794.

    Article  CAS  PubMed  Google Scholar 

  8. Tanghe A, Lefèvre P, Denis O, D'Souza S, Braibant M, Lozes E et al. Immunogenicity and protective efficacy of tuberculosis DNA vaccines encoding putative phosphate transport receptors. J Immunol 1999; 162: 1113–1119.

    CAS  PubMed  Google Scholar 

  9. Delogu G, Li A, Repique C, Collins F, Morris SL . DNA vaccine combinations expressing either tissue plasminogen activator signal sequence fusion proteins or ubiquitin-conjugated antigens induce sustained protective immunity in a mouse model of pulmonary tuberculosis. Infect Immun 2002; 70: 292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan Y, Crane DD, Simpson RM, Zhu YQ, Hickey MJ, Sherman DR et al. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci USA 1998; 95: 9578–9583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roupie V, Romano M, Zhang L, Korf H, Lin MY, Franken KL et al. Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect Immun 2007; 75: 941–949.

    Article  CAS  PubMed  Google Scholar 

  12. Dillon DC, Alderson MR, Day CH, Lewinsohn DM, Coler R, Bement T et al. Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect Immun 1999; 67: 2941–2950.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, Brandt L, Dillon DC et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 2004; 172: 7618–7628.

    Article  CAS  PubMed  Google Scholar 

  14. Hervas-Stubbs S, Majlessi L, Simsova M, Morova J, Rojas MJ, Nouzé C et al. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect Immun 2006; 74: 3396–3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ha SJ, Jeon BY, Youn JI, Kim SC, Cho SN, Sung YC . Protective effect of DNA vaccine during chemotherapy on reactivation and reinfection of Mycobacterium tuberculosis. Gene Therapy 2005; 12: 634–638.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu D, Jiang S, Luo X . Therapeutic effects of Ag85B and MPT64 DNA vaccines in a murine model of Mycobacterium tuberculosis infection. Vaccine 2005; 23: 4619–4624.

    Article  CAS  PubMed  Google Scholar 

  17. Donnelly JJ, Wahren B, Liu MA . DNA vaccines: progress and challenges. J Immunol 2005; 175: 633–639.

    Article  CAS  PubMed  Google Scholar 

  18. Hung CF, Hsu KF, Cheng WF, Chai CY, He L, Ling M et al. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res 2001; 61: 1080–1088.

    CAS  PubMed  Google Scholar 

  19. Triccas JA, Shklovskaya E, Spratt J, Ryan AA, Palendira U, Fazekas de St Groth B et al. Effects of DNA- and Mycobacterium bovis BCG-based delivery of the Flt3 ligand on protective immunity to Mycobacterium tuberculosis. Infect Immun 2007; 75: 5368–5375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sailaja G, Husain S, Nayak BP, Jabbar AM . Long-term maintenance of gp120-specific immune responses by genetic vaccination with the HIV-1 envelope genes linked to the gene encoding Flt-3 ligand. J Immunol 2003; 170: 2496–2507.

    Article  CAS  PubMed  Google Scholar 

  21. Ha SJ, Jeon BY, Kim SC, Kim DJ, Song MK, Sung YC et al. Therapeutic effect of DNA vaccines combined with chemotherapy in a latent infection model after aerosol infection of mice with Mycobacterium tuberculosis. Gene Therapy 2003; 10: 1592–1599.

    Article  CAS  PubMed  Google Scholar 

  22. Taylor JL, Turner OC, Basaraba RJ, Belisle JT, Huygen K, Orme IM . Pulmonary necrosis resulting from DNA vaccination against tuberculosis. Infect Immun 2003; 71: 2192–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weinrich Olsen A, van Pinxteren LA, Meng Okkels L, Birk Rasmussen P, Andersen P . Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect Immun 2001; 69: 2773–2778.

    Article  CAS  PubMed  Google Scholar 

  24. Dietrich J, Aagaard C, Leah R, Olsen AW, Stryhn A, Doherty TM et al. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J Immunol 2005; 174: 6332–6339.

    Article  CAS  PubMed  Google Scholar 

  25. Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 1999; 400: 269–271.

    Article  CAS  PubMed  Google Scholar 

  26. Orme IM . Preclinical testing of new vaccines for tuberculosis: a comprehensive review. Vaccine 2006; 24: 2–19.

    Article  PubMed  Google Scholar 

  27. Brandt L, Skeiky YA, Alderson MR, Lobet Y, Dalemans W, Turner OC et al. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun 2004; 72: 6622–6632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skeiky YA, Lodes MJ, Guderian JA, Mohamath R, Bement T, Alderson MR et al. Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Infect Immun 1999; 67: 3998–4007.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hallengard D, Haller BK, Petersson S, Boberg A, Maltais AK, Isaguliants M et al. Increased expression and immunogenicity of HIV-1 protease following inactivation of the enzymatic activity. Vaccine 2011; 29: 839–848.

    Article  PubMed  Google Scholar 

  30. Kim KS, Jin DB, Ahn SS, Park KS, Seo SH, Suh YS et al. HIV-1 protease has a genetic T-cell adjuvant effect which is negatively regulated by proteolytic activity. J Virol 2010; 84: 7743–7749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 2011; 17: 189–194.

    Article  CAS  PubMed  Google Scholar 

  32. Rollenhagen C, Sörensen M, Rizos K, Hurvitz R, Bumann D . Antigen selection based on expression levels during infection facilitates vaccine development for an intracellular pathogen. Proc Natl Acad Sci USA 2004; 101: 8739–8744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kamath AT, Feng CG, Macdonald M, Briscoe H, Britton WJ . Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis. Infect Immun 1999; 67: 1702–1707.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Morris S, Kelley C, Howard A, Li Z, Collins F . The immunogenicity of single and combination DNA vaccines against tuberculosis. Vaccine 2000; 18: 2155–2163.

    Article  CAS  PubMed  Google Scholar 

  35. Hoang TT, Nansen A, Roy S, Billeskov R, Aagaard C, Elvang T et al. Distinct differences in the expansion and phenotype of TB10.4 specific CD8 and CD4 T cells after infection with Mycobacterium tuberculosis. PLoS One 2009; 4: e5928.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ha SJ, Kim DJ, Baek KH, Yun YD, Sung YC . IL-23 induces stronger sustained CTL and Th1 immune responses than IL-12 in hepatitis C virus envelope protein 2 DNA immunization. J Immunol 2004; 172: 525–531.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sang-Chun Lee, Kwan Seok Lee, Bok Chae Cho and Young Jae Choi for devoted animal care, and Ji-yeung Lee for the technical assistance. This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (20100002131) and by a grant from the Brain Korea 21 Project for Medical Sciences at Yonsei University (20100002132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y-C Sung or S-N Cho.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, SS., Jeon, BY., Kim, KS. et al. Mtb32 is a promising tuberculosis antigen for DNA vaccination in pre- and post-exposure mouse models. Gene Ther 19, 570–575 (2012). https://doi.org/10.1038/gt.2011.140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.140

Keywords

This article is cited by

Search

Quick links