Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs

Abstract

Adeno-associated viral vector 9 (AAV9) has recently been shown to penetrate the blood–brain barrier via intravascular administration, making it a good candidate for diffuse gene delivery. However, the potential side effects of systemic delivery are unknown. Intrathecal viral vector administration may be more invasive than intravenous injections, but it requires far less vector and it can be performed on an outpatient basis, making it an ideal route of delivery for clinical translation. A total of 12 domestic farm pigs (<20 kg) underwent a single-level lumbar laminectomy with intrathecal catheter placement for AAV9 delivery. Animals were perfused and the tissue was harvested 30 days after treatment. Gene expression was assessed by anti-green fluorescent protein immunohistochemistry. Although a single lumbar injection resulted in gene expression limited to the lumbar segment of the spinal cord, three consecutive boluses via a temporary catheter resulted in diffuse transduction of motor neurons (MNs) throughout the cervical, thoracic and lumbar spinal cords. We now present the first successful robust transduction of MNs in the spinal cord of a large animal via intrathecal gene delivery using a self-complementary AAV9. These promising results can be translated to many MN diseases requiring diffuse gene delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Snyder BR, Boulis NM, Federici T . Viral vector-mediated gene transfer for CNS disease. Expert Opin Biol Ther 2010; 10: 381–394.

    Article  CAS  PubMed  Google Scholar 

  2. Franz CK, Federici T, Yang J, Backus C, Oh SS, Teng Q et al. Intraspinal cord delivery of IGF-I mediated by adeno-associated virus 2 is neuroprotective in a rat model of familial ALS. Neurobiol Dis 2009; 33: 473–481.

    Article  CAS  PubMed  Google Scholar 

  3. Snyder BR, Gray SJ, Quach ET, Huang JW, Leung CH, Samulski RJ et al. Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 2011; e-pub ahead of print 25 July 2011; doi:10.1089/hum.2011.008.

  4. Lepore AC, Haenggeli C, Gasmi M, Bishop KM, Bartus RT, Maragakis NJ et al. Intraparenchymal spinal cord delivery of adeno-associated virus IGF-1 is protective in the SOD1G93A model of ALS. Brain Res 2007; 1185: 256–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 2004; 10: 302–317.

    Article  CAS  PubMed  Google Scholar 

  6. Harrop JS, Poulsen DJ, Xiao W, Freese A, During MJ . Effect of altering titer, serotype, and promoter in recombinant adenoassociate virus gene therapy expression of spinal cord neurons and astrocytes. Spine (Phila Pa 1976) 2004; 29: 2787–2792.

    Article  Google Scholar 

  7. Hollis 2nd ER, Kadoya K, Hirsch M, Samulski RJ, Tuszynski MH . Efficient retrograde neuronal transduction utilizing self-complementary AAV1. Mol Ther 2008; 16: 296–301.

    Article  CAS  PubMed  Google Scholar 

  8. Boulis NM, Noordmans AJ, Song DK, Imperiale MJ, Rubin A, Leone P et al. Adeno-associated viral vector gene expression in the adult rat spinal cord following remote vector delivery. Neurobiol Dis 2003; 14: 535–541.

    Article  CAS  PubMed  Google Scholar 

  9. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH . Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 2003; 301: 839–842.

    Article  CAS  PubMed  Google Scholar 

  10. Towne C, Schneider BL, Kieran D, Redmond Jr DE, Aebischer P . Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Therapy 2009; 17: 141–146.

    Article  PubMed  Google Scholar 

  11. Federici T, Riley J, Park J, Bain M, Boulis N . Preclinical safety validation of a stabilized viral vector direct injection approach to the cervical spinal cord. Clin Transl Sci 2009; 2: 165–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riley J, Federici T, Park J, Suzuki M, Franz CK, Tork C et al. Cervical spinal cord therapeutics delivery: preclinical safety validation of a stabilized microinjection platform. Neurosurgery 2009; 65: 754–761; discussion 761–762.

    Article  PubMed  Google Scholar 

  13. Raore B, Federici T, Taub J, Wu MC, Riley J, Franz CK et al. Cervical multilevel intraspinal stem cell therapy: assessment of surgical risks in Gottingen minipigs. Spine (Phila Pa 1976) 2011; 36: E164–E171.

    Article  Google Scholar 

  14. Lunn JS, Sakowski SA, Federici T, Glass JD, Boulis NM, Feldman EL . Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 2011; 6: 201–213.

    Article  PubMed  Google Scholar 

  15. Storek B, Harder NM, Banck MS, Wang C, McCarty DM, Janssen WG et al. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats. Mol Pain 2006; 2: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Iwamoto N, Watanabe A, Yamamoto M, Miyake N, Kurai T, Teramoto A et al. Global diffuse distribution in the brain and efficient gene delivery to the dorsal root ganglia by intrathecal injection of adeno-associated viral vector serotype 1. J Gene Med 2009; 11: 498–505.

    Article  CAS  PubMed  Google Scholar 

  17. Towne C, Pertin M, Beggah AT, Aebischer P, Decosterd I . Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery. Mol Pain 2009; 5: 52.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Storek B, Reinhardt M, Wang C, Janssen WG, Harder NM, Banck MS et al. Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc Natl Acad Sci USA 2008; 105: 1055–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  PubMed  Google Scholar 

  20. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17: 1187–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahim AA, Wong AM, Hoefer K, Buckley SM, Mattar CN, Cheng SH et al. Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB J 2011.

  22. Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 2011; 20: 681–693.

    Article  CAS  PubMed  Google Scholar 

  23. Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med 2010; 2: 35ra42.

    Article  PubMed  Google Scholar 

  24. Tsui BC, Emery D, Uwiera RR, Finucane B . The use of electrical stimulation to monitor epidural needle advancement in a porcine model. Anesth Analg 2005; 100: 1611–1613.

    Article  PubMed  Google Scholar 

  25. Bernards CM . Cerebrospinal fluid and spinal cord distribution of baclofen and bupivacaine during slow intrathecal infusion in pigs. Anesthesiology 2006; 105: 169–178.

    Article  PubMed  Google Scholar 

  26. Feng S, Hong Y, Zhou Z, Jinsong Z, Xiaofeng D, Zaizhong W et al. Monitoring of acute axonal injury in the swine spinal cord with EAE by diffusion tensor imaging. J Magn Reson Imaging 2009; 30: 277–285.

    Article  CAS  PubMed  Google Scholar 

  27. Robertson JT, Soble-Smith J, Powers N, Nelson PA . Prevention of cerebrospinal fistulae and reduction of epidural scar with new surgical hemostat device in a porcine laminectomy model. Spine (Phila Pa 1976) 2003; 28: 2298–2303.

    Article  Google Scholar 

  28. Ponnusamy K, Chewning S, Mohr C . Robotic approaches to the posterior spine. Spine (Phila Pa 1976) 2009; 34: 2104–2109.

    Article  Google Scholar 

  29. Thomas CE, Combs CM . Spinal cord segments. B. gross structure in the adult monkey. Am J Anat 1965; 116: 205–216.

    Article  CAS  PubMed  Google Scholar 

  30. McCown TJ . Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 2005; 5: 333–338.

    Article  CAS  PubMed  Google Scholar 

  31. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369: 2097–2105.

    Article  CAS  PubMed  Google Scholar 

  32. Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 2008; 70: 1980–1983.

    Article  CAS  PubMed  Google Scholar 

  33. Foust KD, Poirier A, Pacak CA, Mandel RJ, Flotte TR . Neonatal intraperitoneal or intravenous injections of recombinant adeno-associated virus type 8 transduce dorsal root ganglia and lower motor neurons. Hum Gene Ther 2008; 19: 61–70.

    Article  CAS  PubMed  Google Scholar 

  34. Azzouz M, Le T, Ralph GS, Walmsley L, Monani UR, Lee DC et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 2004; 114: 1726–1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie J, Xie Q, Zhang H, Ameres SL, Hung JH, Su Q et al. MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol Ther 2011; 19: 526–535.

    Article  CAS  PubMed  Google Scholar 

  36. Artru AA . Spinal cerebrospinal fluid chemistry and physiology. In: Yaksh TL (ed). Spinal Drug Delivery. Elsevier: Amsterdam, 1999.

    Google Scholar 

  37. Yaksh TL (ed). Spinal Drug Delivery. Elsevier: Amsterdam, 1999.

  38. Federici T, Boulis N . Gene-based treatment of motor neuron diseases. Muscle Nerve 2006; 33: 302–323.

    Article  CAS  PubMed  Google Scholar 

  39. Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 2011; 3: 72ra18.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Passini MA, Bu J, Roskelley EM, Richards AM, Sardi SP, O’Riordan CR et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 2010; 120: 1253–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 2005; 8: 85–92.

    Article  CAS  PubMed  Google Scholar 

  42. Manfredsson FP, Rising AC, Mandel RJ . AAV9: a potential blood-brain barrier buster. Mol Ther 2009; 17: 403–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gray SJ, Foti SB, Schwartz JW, Bachaboina L, Taylor-Blake B, Coleman J et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 2011; e-pub ahead of print 1 June 2011; doi:10.1089/hum.2010.245.

  44. Vulchanova L, Schuster DJ, Belur LR, Riedl MS, Podetz-Pedersen KM, Kitto KF et al. Differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. Mol Pain 2010; 6: 31.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beutler AS, Banck MS, Walsh CE, Milligan ED . Intrathecal gene transfer by adeno-associated virus for pain. Curr Opin Mol Ther 2005; 7: 431–439.

    CAS  PubMed  Google Scholar 

  46. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grieger JC, Choi VW, Samulski RJ . Production and characterization of adeno-associated viral vectors. Nat Protoc 2006; 1: 1412–1428.

    Article  CAS  PubMed  Google Scholar 

  48. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ . Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 2011; 19: 1058–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gray SJ, Blake BL, Criswell HE, Nicolson SC, Samulski RJ, McCown TJ et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther 2010; 18: 570–578.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cary H Leung, Brenten L Heeke and Lachlan Busby for their help with the immunohistochemistry protocol. We thank Lavanya Bachaboina and Swati Yadav for technical assistance. We acknowledge Jim Wilson's group at the University of Pennsylvania for the discovery of AAV9, and we also thank Xiao Xiao, PhD (UNC) and the UNC Vector Core for providing the AAV9 helper plasmid. This work was supported by Hannah's Hope Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N M Boulis.

Ethics declarations

Competing interests

RJS is the founder of Asklepios BioPharmaceutical Inc. MAP is a paid employee of Genzyme. Other authors declare no conflict interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Federici, T., Taub, J., Baum, G. et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther 19, 852–859 (2012). https://doi.org/10.1038/gt.2011.130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.130

Keywords

This article is cited by

Search

Quick links