Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Improved systemic antitumor therapy with oncolytic adenoviruses by replacing the fiber shaft HSG-binding domain with RGD

Abstract

Retargeting oncolytic adenoviruses from their systemic preeminent liver tropism to disseminated tumor foci would highly improve the efficacy of these agents at eradicating tumors. We have replaced the KKTK fiber shaft heparan sulfate glycosaminoglycan-binding domain with an RGDK motif in order to achieve simultaneously liver detargeting and tumor targeting. When inserted into a wild-type backbone, this mutation palliated liver transaminase elevation and hematological alterations in mice. Importantly, when tested in a backbone that redirects E1A transcription towards pRB pathway deregulation, RGD at this novel shaft location also improved significantly systemic antitumor therapy compared with the broadly used RGD location at the HI-loop of the fiber knob domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Di Paolo NC, Shayakhmetov DM . Adenovirus de-targeting from the liver. Curr Opin Mol Ther 2009; 11: 523–531.

    CAS  PubMed  Google Scholar 

  2. Bayo-Puxan N, Cascallo M, Gros A, Huch M, Fillat C, Alemany R . Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. J Gen Virol 2006; 87: 2487–2495.

    Article  CAS  PubMed  Google Scholar 

  3. Martin K, Brie A, Saulnier P, Perricaudet M, Yeh P, Vigne E . Simultaneous CAR- and alpha V integrin-binding ablation fails to reduce Ad5 liver tropism. Mol Ther 2003; 8: 485–494.

    Article  CAS  PubMed  Google Scholar 

  4. Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. ProcNatl Acad Sci USA 2008; 105: 5483–5488.

    Article  CAS  Google Scholar 

  5. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397–409.

    Article  CAS  PubMed  Google Scholar 

  6. Gimenez-Alejandre M, Cascallo M, Bayo-Puxan N, Alemany R . Coagulation factors determine tumor transduction in vivo. Hum Gene Ther 2008; 19: 1415–1419.

    Article  CAS  PubMed  Google Scholar 

  7. Kritz AB, Nicol CG, Dishart KL, Nelson R, Holbeck S, Von Seggern DJ et al. Adenovirus 5 fibers mutated at the putative HSPG-binding site show restricted retargeting with targeting peptides in the HI loop. Mol Ther 2007; 15: 741–749.

    Article  CAS  PubMed  Google Scholar 

  8. Rittner K, Schreiber V, Erbs P, Lusky M . Targeting of adenovirus vectors carrying a tumor cell-specific peptide: in vitro and in vivo studies. Cancer Gene Ther 2007; 14: 509–518.

    Article  CAS  PubMed  Google Scholar 

  9. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT . Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 1998; 72: 1844–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V . Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol 2002; 76: 8621–8631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xia H, Anderson B, Mao Q, Davidson BL . Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virol 2000; 74: 11359–11366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bauerschmitz GJ, Lam JT, Kanerva A, Suzuki K, Nettelbeck DM, Dmitriev I et al. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res 2002; 62: 1266–1270.

    CAS  PubMed  Google Scholar 

  13. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R . A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001; 7: 120–126.

    CAS  PubMed  Google Scholar 

  15. Bayo-Puxan N, Gimenez-Alejandre M, Lavilla-Alonso S, Gros A, Cascallo M, Hemminki A et al. Replacement of adenovirus type 5 fiber shaft heparan sulfate proteoglycan-binding domain with RGD for improved tumor infectivity and targeting. Hum Gene Ther 2009; 20: 1214–1221.

    Article  CAS  PubMed  Google Scholar 

  16. Rojas JJ, Guedan S, Searle PF, Martinez-Quintanilla J, Gil-Hoyos R, Alcayaga-Miranda F et al. Minimal RB-responsive E1A Promoter Modification to Attain Potency, Selectivity, and Transgene-arming Capacity in Oncolytic Adenoviruses. Mol Ther 2010; 18: 1960–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aghi M, Martuza RL . Oncolytic viral therapies-the clinical experience. Oncogene 2005; 24: 7802–7816.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Zaiss AK, Colarusso P, Patel K, Haljan G, Wickham TJ et al. The role of capsid-endothelial interactions in the innate immune response to adenovirus vectors. Hum Gene Ther 2003; 14: 627–643.

    Article  CAS  PubMed  Google Scholar 

  19. Cascallo M, Alonso MM, Rojas JJ, Perez-Gimenez A, Fueyo J, Alemany R . Systemic toxicity-efficacy profile of ICOVIR-5, a potent and selective oncolytic adenovirus based on the pRB pathway. Mol Ther 2007; 15: 1607–1615.

    Article  CAS  PubMed  Google Scholar 

  20. Villanueva A, Garcia C, Paules AB, Vicente M, Megias M, Reyes G et al. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 1998; 17: 1969–1978.

    Article  CAS  PubMed  Google Scholar 

  21. Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R . Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther 2010; 18: 1275–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Blanca Luena and Eduard Serra for their technical assistance. This work was supported by BIO2008-04692-C03-01 (RA) from the ‘Ministerio de Ciencia y Tecnología’ and FIS grant PI08/1661 (MC) from the Instituto de Salud Carlos III of the Government of Spain, 2009SGR283 research grant (RA) from the ‘Generalitat de Catalunya’, and by Mutua Madrileña Medical Research Foundation (MC). RA belongs to the Network of Cooperative Research on Cancer (C03-10), ‘Instituto de Salud Carlos III’ of the Government of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Alemany.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, J., Gimenez-Alejandre, M., Gil-Hoyos, R. et al. Improved systemic antitumor therapy with oncolytic adenoviruses by replacing the fiber shaft HSG-binding domain with RGD. Gene Ther 19, 453–457 (2012). https://doi.org/10.1038/gt.2011.106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.106

Keywords

This article is cited by

Search

Quick links