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The effects of mesenchymal stem cells injected via different
routes on modified IL-12-mediated antitumor activity

SH Seo1, KS Kim1, SH Park1, YS Suh2, SJ Kim1, S-S Jeun3 and YC Sung1

Owing to its tumor tropism and prolonged transgene expression, mesenchymal stem cell (MSC) has been considered as an
ideal delivery vehicle for cancer gene therapies or therapeutic vaccines. In this study, we demonstrated that intratumoral (i.t.)
injection of MSCs expressing modified interleukin-12 (MSCs/IL-12M) exhibited stronger tumor-specific T-cell responses and
antitumor effects as well as more sustained expressions of IL-12 and interferon (IFN)-g in both sera and tumor sites than did
IL-12M-expressing adenovirus (rAd/IL-12M) in mice bearing both solid and metastatic tumors. Subcutaneous (s.c.) injection of
MSCs/IL-12M at contralateral site of tumor exhibited similar levels of serum IL-12 and IFN-g as i.t. injection, but much weaker
antitumor effects in both B16F10 melanoma and TC-1 cervical cancer models than i.t. injection. Although intravenous (i.v.)
injection elicited earlier peak serum levels of cytokines, it induced weaker tumor-specific T-cell responses and antitumor
effects than i.t. injection, indicating that serum cytokine levels are not surrogate indicators of antitumor effects. Taken together,
these results indicated that MSC is more efficient than adenovirus as a cytokine gene delivery vehicle and that i.t. injection of
MSCs/IL-12M is the best approach to induce strong tumor-specific T-cell responses that correlate with anti-metastatic effects
as well as inhibition of solid tumor growth, although MSCs themselves have an ability to migrate into the tumor site. In addition,
MSCs/IL-12M embedded in Matrigel (MSCs/IL-12M/Matrigel) exhibited significant antitumor effects even in immunodeficient
mice such as SCID and BNX mice lacking T, B and natural killer (NK) cells, but not in IFN-g knockout mice. Our findings
provide an optimal approach for designing an efficient clinical protocol of MSC-based cytokine gene therapy to induce strong
tumor-specific T-cell responses and therapeutic anticancer efficacy.
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INTRODUCTION

Over the past several decades, chemotherapeutic agents and radiation-
based therapies have provided significant benefits and cures by
eliminating tumor mass. However, current therapies appear to cause
significant systemic or local toxicity.1 In addition, the incidence of
cancer relapse due to micro-metastasis and/or the generation of
tumors resistant to current therapies cause many complications,2

suggesting that novel approaches or modifications of current protocols
are needed to overcome these hurdles. Immunotherapy, as a new
direction in cancer therapy, is based on utilizing our immune system
or its components to attack cancer cells with high specificity. In the
context of cancer immunotherapy, cytokines have been widely utilized
as means of boosting both innate and adaptive immune responses
against tumor. However, systemic in vivo distribution of recombinant
cytokine proteins is frequently associated with serious and even life-
threatening consequences as well as marginal clinical responses in
most patients.3,4 As a result, several delivery vehicles for example,
adenoviral vector, plasmid DNA or mesenchymal stem cells (MSCs)
have been utilized to target cytokine genes and express them in the
area of interest.5–7

Intratumoral delivery of plasmid DNA encoding cytokines such as
IL-12 was effective in tumor regression by inducing CD8+ T-cell
infiltration and cytotoxic T lymphocyte activity.6 In the case of using

an adenovirus as a delivery vehicle, the efficiency of cytokine gene
delivery into a tumor may vary depending on the expression level of
coxsackievirus and adenovirus receptor on tumor.8 In addition, pre-
existing neutralizing antibody or neutralizing antibody generated by
repeated injection of rAd vector could hinder the therapeutic efficacy
of transgene.9 Recently, it was reported that the use of ex vivo rAd-
transduced MSCs can avoid the current obstacles present in adeno-
virus-based gene therapy and that MSCs expressing IL-12 exerted
stronger antitumor activity than did plasmid DNA encoding IL-12.10

However, it is still not clear whether the antitumor effect as well as
T-cell responses induced by cytokine-expressing MSCs is affected by
injection route.
Bone marrow-derived MSCs are adult pluripotent progenitor cells

with the potential to differentiate into osteoblasts, chondrocytes or
adipocytes.11–13 Furthermore, MSCs expressing transgenes maintained
long-term expression (up to 6 months) in vivo because of their hypo-
immunogenic properties and production of immunosuppressive
molecules.14,15 More importantly, MSCs were shown to migrate into
inflamed, damaged tissues and tumor sites,13,16 which make them
ideal cellular vehicles because of their capability to deliver cytokine
genes directly to tumors compared with other cellular delivery vehicles
such as fibroblasts, dendritic cells (DCs) and autologous tumor cells.
Administration of genetically modified MSCs producing interferon
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(IFN)-a, IFN-b or tumor necrosis factor-related apoptosis-inducing
ligand via intravenous (i.v.) route reduced the incidence of lung
metastasis in mouse and human cancer models.16–19 In addition, i.v.
injected IL-12-expressing MSCs (MSCs/IL-12) inhibited the metastasis
of lymphatic tumors without causing severe adverse effects.7

IL-12, comprised of the p35 and p40 subunits, is a pro-inflammatory
cytokine produced by antigen-presenting cells and induces prolifera-
tion of natural killer (NK) cells and cytotoxic T lymphocytes as well as
IFN-g production.20 IL-12-induced IFN-g was shown to upregulate
major histocompatibility complexes and adhesion molecules, resulting
in enhanced susceptibility of tumor cell to cytotoxic T lymphocyte-
mediated killing.21,22 In addition, IFN-g suppresses angiogenesis
through the production of IFN-inducible protein-10 and monokine
induced by IFN-g.23,24 Owing to its diverse effects, IL-12 has been
regarded as a master regulator of antitumor immunity among many
cytokines.25–27 However, there is a major obstacle in IL-12 gene-based
immunotherapy because of its co-expression of the p40 subunit which
is known as a natural antagonist of IL-12.28 As previously reported,29

modified IL-12 (IL-12M), an N-glycosylation mutant of IL-12 at
Asn220, selectively reduces secretion of the p40 subunit and thus
significantly enhances co-delivered antigen-specific T-cell responses. In
addition, there are no significant differences in biological activity in
terms of IFN-g induction and receptor-binding affinity between IL-12
and IL-12M.
In this study, we demonstrated for the first time that intratumoral

(i.t.) injection of IL-12M-expressing MSCs exhibited the strongest
antitumor effects compared with other injection routes (i.v. or
subcutaneous; s.c.), which closely correlated with tumor-specific
T-cell responses but not with serum cytokine levels in mice bearing
both solid and metastatic tumor. In addition, Matrigel embedding of

MSCs/IL-12M exhibited significant anti-metastatic effect as well as
inhibition of solid tumor growth even in immunodeficient mice.

RESULTS

MSCs/IL-12M inhibited both pulmonary metastasis and solid
tumor growth at a greater degree than did rAd/IL-12M
Rat bone marrow-derived MSCs were transduced with rAd/IL-12M
using the tetrameric form of cell-permeable peptide (4HP4) to
generate MSCs/IL-12M as previously described30 and 495% of
MSCs were transduced (data not shown). The inclusion of 4HP4
significantly enhanced transduction efficiency of rAd/IL-12M into
MSCs, resulting in higher IL-12 expression level by more than
30-fold (data not shown). In order to assess the relative therapeutic
efficacy of rAd/IL-12M and MSCs/IL-12M, mice bearing both solid
and metastatic tumors were generated by injecting with B16F10 s.c.
and then i.v. At 1 and 8 days after i.v. tumor injection, tumor-bearing
mice were either left untreated or injected with MSCs, rAd/IL-12M or
MSCs/IL-12M into solid tumor.
There were no significant differences in solid tumor progression, the

number of lung metastases and survival rates between mice injected
with MSCs and untreated mice, indicating that MSCs alone had
no effect on tumor growth (Figure 1a–c). This result is inconsistent
with the previous reports that MSCs could inhibit tumor growth
directly by secreting dickkopf-131 or promote tumor growth by
suppressing immune cells through release of anti-inflammatory mole-
cules such as transforming growth factor-b, IL-10 and prostaglandin
E2.32 As expected, i.t. injection of rAd/IL-12M inhibited both solid
tumor growth and the formation of lung metastases, but the effects
were much lower than those of MSCs/IL-12M (Figures 1a, b;
Po0.01). All mice treated with rAd/IL-12M delayed their survival,
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Figure 1 Relative antitumor activities between mesenchymal stem cell (MSCs) expressing modified interleukin-12 (MSCs/IL-12M) and rAd/IL-12M. When

subcutaneous (s.c.) injected B16F10 tumor cells grew up to a size of about 5mm in diameter, mice were injected with 2�105 cells of B16F10 cells i.v. At

day 1 and 8 after intravenous (i.v.) injection, the tumor-bearing mice were treated with 5�106p.f.u. of rAd/IL-12M, 1�105 MSCs or MSCs/IL-12M as
indicated by arrows. Tumor mass progression (a) and survival rates (c) were monitored at 3-day intervals. Lung tumor nodules were assessed 14 days after

i.v. tumor injection (b). At 14 days after i.v. tumor injection, splenocytes were harvested and the frequency of tumor-specific interferon (IFN)-g-producing
cells per 106 splenocytes was determined by an IFN-g enzyme-linked immunosorbent spot (ELISPOT) assay (d). These are representative of three

independent experiments with similar results. *Po0.05 and **Po0.01.
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but died 30 days after i.v. tumor injection. In contrast, 70% of the
MSCs/IL-12M-treated mice survived at the end of experiment
(Figure 1c, Po0.01). It is worth noting that mice bearing both solid
and metastatic tumor died when solid tumor volume reached
400mm3. As mortality in mice bearing solid tumor only was observed
when tumor volume was 41000mm3, (see ref. 5), metastatic tumor
might be a major cause of death in this study.
When tumor-specific T-cell responses were assessed by IFN-g

enzyme-linked immunosorbent spot assay using tumor lysate, i.t.
injection of MSCs/IL-12M induced Bfive-fold higher numbers of
B16F10 tumor-specific IFN-g-producing T cells than those induced by
rAd/IL-12M (Figure 1d, Po0.01). Like untreated negative control,
mice injected with MSCs did not develop any detectable level of
tumor-specific T-cell responses.
MSCs/IL-12M appeared to elicit higher and more sustained expres-

sions of IL-12 and IFN-g in serum (Figure 2a, b) and tumor site
(Figure 2c, d) than rAd/IL-12M. As the same amount of rAd/IL-12M
was used in ex vivo generation of MSCs/IL-12M, the difference in the
level of cytokines observed here may be caused by higher ex vivo
transduction efficiency of rAd/IL-12M into MSCs by the presence
of 4HP4 than direct in vivo infection of rAd/IL-12M delivered
via i.t. route. Interestingly, cytokines produced by i.t. injection of
MSCs/IL-12M are detectable in the tumor sites for a longer time than
in serum (10–14 versus 5 days). In addition, these enhanced and
prolonged expressions of cytokines seem to be closely associated with
the induction of strong tumor-specific T-cell responses, leading to
increased antitumor effects.

Intratumoral injection of MSCs/IL-12M induced the most potent
antitumor activities compared with other routes of injection
To investigate the relative effect of injection route on antitumor
activity, MSCs/IL-12M were injected into mice bearing solid and

metastatic B16F10 melanoma via i.t., s.c. or i.v. route. Administration
of MSCs/IL-12M via an i.t. route elicited the most significant
retardation of solid tumor growth and prolonged survival compared
with other injection routes (s.c. and i.v.) (Figure 3A). It is worth
noting that contralateral s.c. injection of MSCs/IL-12M exhibited
marginal antitumor activities in terms of suppression of solid tumor
growth and enhancement of survival, which agrees well with a
previous report.33 Also, mice injected with MSCs/IL-12M via i.t.
route showed less number of metastatic nodules than that of contra-
lateral s.c. or i.v. route (Figure 3B). In addition, i.t. injection generated
the highest frequency of tumor-specific T cells, followed by i.v.
injection (Figure 3C), indicating that antitumor effects of MSCs/
IL-12M are closely correlated with tumor-specific T-cell responses.
Similar results were observed in TC-1 cervical cancer model in
terms of the induction of tumor-specific T-cell responses and anti-
tumor effects using the same injection route for MSCs/IL-12M
treatment, indicating tumor-type independent effects (Supplementary
Figure 1a–d).
When serum cytokine levels were evaluated at various time points

from day 1 to 7, injection of MSCs/IL-12M via i.v. route generated
earlier peak levels of IL-12 and IFN-g compared with other injection
routes, but the relative level of these cytokines were reversed at day 5
(Figure 3D). There were no significant differences in cytokine levels
and expression patterns produced by MSCs/IL-12M treatment
between i.t. and s.c. routes, indicating that the level of serum cytokines
is not an indicator of antitumor potential. It is worth noting that the
concentration of IFN-g in serum follows the same kinetics as IL-12
which is not consistent to the previous report.34 The discrepancy may
be due to difference in assay condition. As we started to check the
levels of IFN-g at 1 day after treatment then every 2 days thereafter,
delayed expression of IFN-g may not be reflected in this study as
previous report.35
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Matrigel embedding enhanced antitumor activity of MSCs/IL-12M,
which was detectable even in immunodeficient mice
As Matrigel embedding was reported to enhance antitumor activities
of MSCs/IL-12 against solid tumor growth in both the 4T1 breast
cancer and B16F10 melanoma models,33 we examined the effect of
Matrigel embedding on the antitumor activity of MSCs/IL-12M in
mice bearing solid and metastatic tumor. As expected, MSCs/IL-12M
embedded in Matrigel (MSCs/IL-12M/Matrigel) appeared to retard
solid tumor growth and improve survival rate (Figure 4a, b). In
addition, the number of lung tumor nodules was significantly reduced
by Matrigel embedding (Figure 4c). It is worth noting that similar
pattern was observed in growth inhibition of both types of tumors
including solid and metastatic tumors. Overall, these antitumor effects
were correlated with the magnitude of induced tumor-specific T-cell
responses (Figure 4d), suggesting that induced T-cell responses
appeared to have a major role in inhibiting metastatic and solid
tumor growth. Consistent with the previous results,14 IL-12 and IFN-g
expression in serum and tumor site were increased and prolonged by
the inclusion of Matrigel (Supplementary Figures 2a–d).

As NK and T cells are key players in immune-mediated antitumor
effect,27,36 we evaluated antitumor effect of MSCs/IL-12M/Matrigel in
several kinds of immunodeficient mice such as Beige (NK cell
deficient), IFN-g knockout, CD8+ T cell-depleted, SCID and BNX
(T, B and NK cell deficient) mice. As expected, antitumor effects by
MSCs/IL-12M/Matrigel were not observed in IFN-g knockout mice
(Figure 5a–c), which was consistent with a previous report that IL-12-
mediated antitumor effects were totally dependent on IFN-g.37

However, significant antitumor effects were observed in other immuno-
deficient mice, even in BNXmice, suggesting that other innate immunity
such as macrophages and IFN-g-induced anti-angiogenic effects
might also contribute to antitumor effects observed here. It is likely
that antitumor effects are more impaired in SCID and CD8+

T-cell-depleted mice than in Beige mice (Po0.05), indicating that
CD8+ T cells have more roles in inhibiting tumor growth than NK
cells in IL-12M-mediated antitumor activity. It is worth noting that
the growth of solid tumor and the number of lung metastasis are
significantly increased in BNX mice compared with other immuno-
deficient and wild-type mice, supporting the immunosurveillance
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theory that immune system continuously monitors its tissues for the
presence of cancer cells as foreign invaders.

DISCUSSION

In this study, we evaluated relative effect of IL-12M-expressing
adenovirus and MSCs on the capability of inducing tumor-specific
T-cell responses and antitumor effects by head-to-head comparison.
Also, we used the same amount of adenovirus expressing IL-12M in
ex vivo generation of MSCs/IL-12M to compare their relative anti-
tumor activity quantitatively in mice bearing both solid and metastatic
tumor, which may more closely mimic actual circumstances of
patients with advanced tumor. Intratumoral injection of MSCs/
IL-12M conferred potent antitumor activities in inducing tumor-
specific T-cell responses and inhibiting tumor growth at a greater
degree than those of rAd/IL-12M, indicating that MSC is more
effective than adenovirus as a cytokine gene delivery vehicle. These
results are in part similar to the previous report that i.v. injection of
MSCs/IL-12 exerted stronger antitumor activity than did rAd/IL-12.7

In this study, we used MSCs originated from rat bone marrow
(xenogeneic). Previous report showed that injection of xenogenic
MSCs can generate MSC-specific antibodies, which resulted in
decreased population of MSCs at the injection site from 20% at day
2 to 2% at day 7.10 Therefore, syngeneic MSCs transduced with rAd/
IL-12Mmay induce stronger antitumor effect due to extended survival
and more sustained secretion of IL-12 than rAd/IL-12M-transduced
xenogeneic MSCs. However, there is safety concern on using syngeneic
MSC because syngeneic MSCs can transform in vivo with repeated
replication.38,39 In case of xenogeneic MSCs, tumorigenicity still
remains undetermined.
Antitumor activity of MSCs/IL-12M regarding inhibition of solid

and metastatic tumor growth as well as survival rate was further
enhanced by Matrigel embedding, leading to induction of antitumor
effects even in immunodeficient mice. These results are not consistent
with previous report that IL-12-expressing MSCs embedded Matrigel
did not show antitumor effect in NOD-SCID mice.33 This discrepancy
may be caused by the different expression level due to enhanced
transduction efficiency of rAd/IL-12M into MSCs by 4HP4 and the
form of IL-12 used (IL-12 versus IL-12M). In addition, the difference
of immunodeficient mice used and experimental condition may
affect the discrepancy. As cancer patients normally show immune-
suppressed condition,40 MSCs/IL-12M/Matrigel can be a therapeutic
option to treat patients with immunodeficiency. It is worth noting
that IL-12-responding cells include not only lymphoid cells but also
non-lymphoid cells such as macrophages.
When we investigated the effects of injection route on the antitumor

efficacy of MSCs/IL-12M using two different tumor models (B16F10
melanoma and TC-1 cervical cancer), MSCs/IL-12M injected via i.t.
route induced tumor-specific T-cell responses more efficiently than
did an i.v. or s.c. administration, leading to enhanced therapeutic
efficacy against both solid and metastatic tumor. As MSCs were
reported to have tumor tropism,41 MSCs/IL-12M injected via an i.v.
route may migrate to the metastatic tumors and then inhibit their
growth more efficiently than those injected via other routes (i.t. and
s.c.). Surprisingly, we showed that i.t. injection of MSCs/IL-12M
exhibited greater anti-metastatic activity than i.v. injection in mice
bearing solid and metastatic tumor (Figure 3E and Supplementary
Figure 1e, Po0.05). This result indicated that tumor tropism of MSCs
injected via an i.v. route is not strong enough to induce anti-metastatic
effect compared with direct i.t. injection. Taken together, the injection
route significantly affects the induction of systemic tumor-specific
T-cell responses, which may be responsible for suppression of both

metastatic and solid tumor growth in the context of IL-12-mediated
antitumor effect. As i.v. injection of MSCs/IL-12M induced earlier and
higher peak levels of cytokines than other routes and as there are no
significant differences in cytokine expression levels and prolongation
between s.c. and i.t. injection route, serum cytokine levels are unlikely
to be an indicator of antitumor effects. Our result agrees with a
previous observation that serum IL-12 levels were not correlated with
antitumor effect,6 but does not agree with other several reports that
serum cytokine level is proportional to antitumor potential in IL-12-
mediated tumor immunotherapy.42–44

Overall, action mechanism for inducing systemic tumor-specific
T-cell responses which were responsible for regressing both solid and
metastatic tumors may be mainly initiated with direct tumor cell
killing by inflammatory cells and cytotoxic soluble factors recruited by
cytokines at tumor site, resulting in the release of tumor antigens.
These released tumor antigens should be loaded on professional
antigen-presenting cells, especially dendritic cells, at tumor site as
well as in the draining lymph node in order to present them to tumor-
specific naı̈ve T cells, which proliferate and differentiate into effector
and memory T cells. Thus, the level and duration of cytokines such as
IL-12 and IFN-g at tumor site, but not in serum, may have a major
role in triggering tumor-specific T-cell responses. These tumor-specific
effector T cells may migrate to recognize and destroy not only solid
tumor but also metastatic tumor. It was reported that IL-12 expression
at tumor site could attract activated lymphocytes by inducing inter-
cellular adhesion molecule 1 and vascular cell adhesion protein 1
expression.45 In addition, IL-12 is critical for the development of
peritumoral stroma required for accepting tumor-migrating T cells.46

Our findings provide a new insight for designing an optimal clinical
protocol of cytokine gene-based immunotherapeutics for inducing
not only the strongest tumor-specific T-cell responses but also anti-
tumor effects.

MATERIALS AND METHODS
IL-12M-expressing adenovirus
rAd/IL-12M (rAd/IL-12N220L) was constructed as previously described5 using

the AdEasy Vector System (QBiogene, Carlsbad, CA, USA).

Preparation of genetically modified MSCs
Bone marrow cells were collected from the femurs and tibias of 3- to 4-week-

old SD rats by flushing respective tissues with Hank’s balanced salts solution

(WelGENE, Daegu, Korea) containing 2% fetal bovine serum (Hyclone, Logan,

UT, USA). After red blood cells were removed, bone marrow cells were filtered

through a 40mm cell strainer (BD Bioscience, San Jose, CA, USA) and separated

using Ficoll density gradient centrifugation. Isolated bone marrow cells were

resuspended and cultured in Dulbecco’s modified Eagle’s medium (1000mg l�1

glucose; WelGENE) with 20% fetal bovine serum, 100Uml�1 penicillin and

100mgml�1 of streptomycin (Invitrogen, Carlsbad, CA, USA) for about 10 days

until colonies formed. Colonies were harvested and used for subsequent

experiments as MSCs. MSCs were seeded into a 70mm flask at an initial

density of 1.4�106 cells and incubated overnight at 37 1C. The cells were

infected with a mixture of rAd/IL-12M (7�107 p.f.u.) and 4HP4 (tetrameric

form of HP4) (0.1mM)47 and incubated at 37 1C for 30min. Cells were then

trypsinized, washed with phosphate-buffered saline and injected into mice

(1�105 cells per mouse).

Cell lines
B16F10 cells were purchased from the American Type Culture Collection

(Manassas, VA, USA) and maintained in Dulbecco’s modified Eagle’s

medium supplemented with 10% fetal bovine serum and 100Uml�1 penicillin

and 100mgml�1 streptomycin (Invitrogen). TC-1 cells were kindly provided

by Dr TC Wu of Johns Hopkins University and maintained as previously

described.48
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Mice
Female C57BL/6 mice (6–8 weeks of age) were purchased from Charles River

Breeding Laboratories (Shizuoka, Japan). Beige, BNX, IFN-g knockout and

SCID mice were purchased from The Jackson Laboratory (Bar Harbor, ME,

USA). All mice were maintained in the animal care facility at Pohang University

of Science and Technology.

Tumor establishment and treatment
B16F10 cells (1�106) in 100ml of phosphate-buffered saline were injected s.c.

into the right hind flank of C57BL/6, Beige, BNX, IFN-g knockout and SCID

mouse. When tumor diameters reached 5mm, mice were i.v. injected with

2�105 B16F10 cells in 100ml phosphate-buffered saline. At day 1 and 8 after i.v.

tumor injection, C57BL/6 mice were injected in the tumors with 5�106 p.f.u.

of rAd/IL-12M, 1�105 MSCs or MSCs/IL-12M in 100ml of Matrigel (BD

Bioscience). Tumor growth and survival rate were monitored every 3 days.

To assess the effects of the injection route, B16F10 tumor cells were injected as

described above followed by injection of MSCs/IL-12M (1�105 cells) via an i.t.,

i.v. or s.c. (contralateral to B16F10 implantation) route twice with 1-week

interval. In the TC-1 tumor model, tumor injection and therapeutic treatment

were performed as in the B16F10 melanoma model described above, except

that 5�105 and 1�105 cells of TC-1 were used for s.c. and i.v. injections,

respectively. The number of lung metastases was assessed 14 days after i.v.

tumor injection as previously described for all experiments.5

In vivo CD8+ T-cell depletion
Mice were intraperitoneally injected with rat anti-mouse CD8 monoclonal anti-

body prepared from the clone 2.43 at 500mg per mouse, starting at 1 day after

i.v. tumor injection with 1-week intervals until the end of experiment. Depletion

of CD8+ T cells was confirmed by fluorescence activated cell sorter analysis.

Measurement of IL-12 and IFN-c expression levels
Sera were collected from the orbital veins of tumor-bearing mice and the tumor

mass was collected at the indicated time points after therapeutic injections. Tumor

tissues were homogenized and protease inhibitor buffer (Roche Diagnostics,

Mannheim, Germany) was added up to 500ml. IL-12 and IFN-g levels were

determined using the IL-12p70 and IFN-g ELISA kits (R&D Systems, Minneapolis,

MN, USA), respectively, according to the manufacturer’s instructions.

IFN-c enzyme-linked immunosorbent spot assay
Enzyme-linked immunosorbent spot assays were performed as previously

described.5,48 Data were expressed as the mean±s.e.m. number of IFN-g
secreting cells per 1�106 splenocytes.

Statistical analysis
All data were expressed as the mean±s.e.m. and were representative of at least

two different experiments. Statistical difference between groups was assessed

using a two-tailed Student’s t-test. Statistical survival analysis was performed

using the Kaplan–Meier method and log rank test. For all cases, differences

were considered significant when P-values were o0.05.
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