Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors

Abstract

Adeno-associated virus (AAV) vectors with capsids of AAV serotype 9 enable an efficient transduction of the heart upon intravenous injection of adult mice but also transduce the liver. The aim of this study was to improve specificity of AAV9 vector-mediated cardiac gene transfer by microRNA (miR)-dependent control of transgene expression. We constructed plasmids and AAV vectors containing target sites (TSs) of liver-specific miR122, miR192 and miR148a in the 3′ untranslated region (3′UTR) of a luciferase expression cassette. Luciferase expression was efficiently suppressed in liver cell lines expressing high levels of the corresponding miRs, whereas luciferase expression was unaffected in cardiac myocytes. Intravenous injections of AAV9 vectors bearing three repeats of miR122 TS in the 3′UTR of an enhanced green fluorescent expression (EGFP) expression cassette resulted in the absence of EGFP expression in the liver of adult mice, whereas the control vectors without miR TS displayed significant hepatic EGFP expression. EGFP expression levels in the heart, however, were comparable between miR122-regulated and control vectors. The liver-specific de-targeting in vivo using miR122 was even more efficient than transcriptional targeting with a cardiac cytomegalovirus (CMV)-enhanced myosin light chain (MLC) promoter. These data indicate that miR-regulated targeting is a powerful new tool to further improve cardiospecificity of AAV9 vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

miR:

microRNA

AAV:

adeno-associated virus

TS:

target site

nt:

nucleotides

References

  1. Su H, Joho S, Huang Y, Barcena A, Rakawa-Hoyt J, Grossman W et al. Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc Natl Acad Sci USA 2004; 101: 16280–16285.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation 2001; 104: 1424–1429.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Suckau L, Fechner H, Chemaly E, Krohn S, Hadri L, Kockskamper J et al. Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 2009; 119: 1241–1252.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Most P, Seifert H, Gao E, Funakoshi H, Volkers M, Heierhorst J et al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation 2006; 114: 1258–1268.

    Article  CAS  PubMed  Google Scholar 

  5. Goehringer C, Rutschow D, Bauer R, Schinkel S, Weichenhan D, Bekeredjian R et al. Prevention of cardiomyopathy in delta-sarcoglycan knockout mice after systemic transfer of targeted adeno-associated viral vectors. Cardiovasc Res 2009; 82: 404–410.

    Article  CAS  PubMed  Google Scholar 

  6. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009; 15: 171–181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ma X, Glover C, Miller H, Goldstein J, O'Brien E . Focal arterial transgene expression after local gene delivery. Can J Cardiol 2001; 17: 873–883.

    CAS  PubMed  Google Scholar 

  8. Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14: 452–455.

    Article  CAS  PubMed  Google Scholar 

  9. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ . Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 2003; 10: 2112–2118.

    Article  CAS  PubMed  Google Scholar 

  10. Fechner H, Sipo I, Westermann D, Pinkert S, Wang X, Suckau L et al. Cardiac-targeted RNA interference mediated by an AAV9 vector improves cardiac function in coxsackievirus B3 cardiomyopathy. J Mol Med 2008; 86: 987–997.

    Article  CAS  PubMed  Google Scholar 

  11. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  PubMed  Google Scholar 

  13. Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99: e3–e9.

    Article  CAS  PubMed  Google Scholar 

  14. Vandendriessche T, Thorrez L, Costa-Sanchez A, Petrus I, Wang L, Ma L et al. Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost 2007; 5: 16–24.

    Article  CAS  PubMed  Google Scholar 

  15. Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G et al. AAV9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 2008; 19: 1359–1368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE . Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  17. Yang L, Jiang J, Drouin LM, Gbandje-McKenna M, Chen C, Qiao C et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci USA 2009; 106: 3946–3951.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pacak CA, Sakai Y, Thattaliyath BD, Mah CS, Byrne BJ . Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. Genet Vaccines Ther 2008; 6: 13.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Muller OJ, Leuchs B, Pleger ST, Grimm D, Franz WM, Katus HA et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 2006; 70: 70–78.

    Article  PubMed  Google Scholar 

  20. Muller OJ, Schinkel S, Kleinschmidt JA, Katus HA, Bekeredjian R . Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats. Gene Ther 2008; 15: 1558–1565.

    Article  CAS  PubMed  Google Scholar 

  21. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  22. Harfe BD . MicroRNAs in vertebrate development. Curr Opin Genet Dev 2005; 15: 410–415.

    Article  CAS  PubMed  Google Scholar 

  23. Pushparaj PN, Aarthi JJ, Manikandan J, Kumar SD . siRNA, miRNA, and shRNA: in vivo applications. J Dent Res 2008; 87: 992–1003.

    Article  CAS  PubMed  Google Scholar 

  24. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  25. Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007; 25: 1457–1467.

    Article  CAS  PubMed  Google Scholar 

  26. Gentner B, Schira G, Giustacchini A, Amendola M, Brown BD, Ponzoni M et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 2009; 6: 63–66.

    Article  CAS  PubMed  Google Scholar 

  27. Kelly EJ, Hadac EM, Greiner S, Russell SJ . Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 2008; 14: 1278–1283.

    Article  CAS  PubMed  Google Scholar 

  28. Leja J, Nilsson B, Yu D, Gustafson E, Akerstrom G, Oberg K et al. Double-detargeted oncolytic adenovirus shows replication arrest in liver cells and retains neuroendocrine cell killing ability. PLoS One 2010; 5: e8916.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cawood R, Chen HH, Carroll F, Bazan-Peregrino M, van RN, Seymour LW . Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells. PLoS Pathog 2009; 5: e1000440.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Suzuki T, Sakurai F, Nakamura S, Kouyama E, Kawabata K, Kondoh M et al. miR-122a-regulated expression of a suicide gene prevents hepatotoxicity without altering antitumor effects in suicide gene therapy. Mol Ther 2008; 16: 1719–1726.

    Article  CAS  PubMed  Google Scholar 

  31. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V . Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004; 5: R13.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87–98.

    Article  CAS  PubMed  Google Scholar 

  34. Bish LT, Sleeper MM, Brainard B, Cole S, Russell N, Withnall E et al. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther 2008; 16: 1953–1959.

    Article  CAS  PubMed  Google Scholar 

  35. Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della VP et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 2007; 110: 4144–4152.

    Article  CAS  PubMed  Google Scholar 

  36. Ylosmaki E, Hakkarainen T, Hemminki A, Visakorpi T, Andino R, Saksela K . Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific microRNA. J Virol 2008; 82: 11009–11015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Brown BD, Naldini L . Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009; 10: 578–585.

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W . Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125: 1111–1124.

    Article  CAS  PubMed  Google Scholar 

  39. Forstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD . Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 2007; 130: 287–297.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Doench JG, Petersen CP, Sharp PA . siRNAs can function as miRNAs. Genes Dev 2003; 17: 438–442.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Brennecke J, Stark A, Russell RB, Cohen SM . Principles of microRNA-target recognition. PLoS Biol 2005; 3: e85.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ebert MS, Neilson JR, Sharp PA . MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4: 721–726.

    Article  CAS  PubMed  Google Scholar 

  43. Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 2008; 19: 3272–3282.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Fechner H, Suckau L, Kurreck J, Sipo I, Wang X, Pinkert S et al. Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban. Gene Ther 2007; 14: 211–218.

    Article  CAS  PubMed  Google Scholar 

  45. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78: 6381–6388.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Dubielzig R, King JA, Weger S, Kern A, Kleinschmidt JA . Adeno-associated virus type 2 protein interactions: formation of pre-encapsidation complexes. J Virol 1999; 73: 8989–8998.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sipo I, Fechner H, Pinkert S, Suckau L, Wang X, Weger S et al. Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction. Gene Ther 2007; 14: 1319–1329.

    Article  CAS  PubMed  Google Scholar 

  48. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of Coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 1999; 6: 1520–1535.

    Article  CAS  PubMed  Google Scholar 

  49. Fechner H, Pinkert S, Wang X, Sipo I, Suckau L, Kurreck J et al. Coxsackievirus B3 and adenovirus infections of cardiac cells are efficiently inhibited by vector-mediated RNA interference targeting their common receptor. Gene Ther 2007; 14: 960–971.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Barbara Leuchs and the DKFZ vector core production unit for their support in generating high titer AAV vector stocks and Stefanie Schinkel and Georg Zingler for support in histological analyses. In addition, we thank Ulrike Gärtner for skillful intravenous injections and the Nikon Center Heidelberg for support in microscopy. This work was supported through SFB Transregio 19 by project grants C1 to HF and RV and by a grants of the Deutsche Forschungsgemeinschaft (FE785/2-1 and FE785/3-1 to HF, KU1436/6-1 to JK, MU 1654/3-2 to OJM); and the Bundesministerium für Bildung und Forschung (01GU0527 to OJM and HAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Fechner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisler, A., Jungmann, A., Kurreck, J. et al. microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther 18, 199–209 (2011). https://doi.org/10.1038/gt.2010.141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.141

Keywords

This article is cited by

Search

Quick links