Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

Celastrol enhances AAV1-mediated gene expression in mice adipose tissues

Abstract

The transduction of adeno-associated virus (AAV) in adipose tissues was not well characterized and appeared to be insufficient as compared with other targeted tissues in gene therapy. We have found that celastrol, a chemical from a traditional Chinese herb known to inhibit the proteasome activity, was able to enhance the transgene expression mediated by AAV1 in 3T3-L1 preadipocytes both before and after induced differentiation. A synergism of celastrol and nonionic surfactant pluronic F68 cotreatment on AAV1 transduction was observed in the experiments with rat primary preadipocyte cultures and in adipose tissues in vivo. By fluorescent microscopy using Alexa Fluor 647-labeled AAV and quantitative PCR assays, we found that celastrol treatments increased the nuclear distribution of AAV genomic DNAs, but not the total amount of viral cellular uptake in preadipocytes, which was different from the effect of pluronic F68 treatment to significantly promote the AAV internalization. Our data suggested that bioactive monomeric compounds extracted from herbal medicines might be used to facilitate AAV-mediated gene transfer applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Meunier-Durmort C, Grimal H, Sachs LM, Demeneix BA, Forest C . Adenovirus enhancement of polyethylenimine-mediated transfer of regulated genes in differentiated cells. Gene Ther 1997; 4: 808–814.

    Article  CAS  Google Scholar 

  2. Meunier-Durmort C, Ferry N, Hainque B, Delattre J, Forest C . Efficient transfer of regulated genes in adipocytes and hepatoma cells by the combination of liposomes and replication-deficient adenovirus. Eur J Biochem 1996; 237: 660–667.

    Article  CAS  Google Scholar 

  3. Hertzel AV, Sanders MA, Bernlohr DA . Adenovirus-mediated gene transfer in primary murine adipocytes. J Lipid Res 2000; 41: 1082–1086.

    CAS  PubMed  Google Scholar 

  4. Ross SA, Song X, Burney MW, Kasai Y, Orlicky DJ . Efficient adenovirus transduction of 3T3-L1 adipocytes stably expressing coxsackie-adenovirus receptor. Biochem Biophys Res Commun 2003; 302: 354–358.

    Article  CAS  Google Scholar 

  5. Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P et al. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther 2003; 14: 59–66.

    Article  CAS  Google Scholar 

  6. Carlotti F, Bazuine M, Kekarainen T, Seppen J, Pognonec P, Maassen JA et al. Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol Ther 2004; 9: 209–217.

    Article  CAS  Google Scholar 

  7. Liao W, Nguyen MT, Imamura T, Singer O, Verma IM, Olefsky JM . Lentiviral short hairpin ribonucleic acid-mediated knockdown of GLUT4 in 3T3-L1 adipocytes. Endocrinology 2006; 147: 2245–2252.

    Article  CAS  Google Scholar 

  8. Nagamatsu S, Nakamichi Y, Ohara-Imaizumi M, Ozawa S, Katahira H, Watanabe T et al. Adenovirus-mediated preproinsulin gene transfer into adipose tissues ameliorates hyperglycemia in obese diabetic KKA(y) mice. FEBS Lett 2001; 509: 106–110.

    Article  CAS  Google Scholar 

  9. Mizukami H, Mimuro J, Ogura T, Okada T, Urabe M, Kume A et al. Adipose tissue as a novel target for in vivo gene transfer by adeno-associated viral vectors. Hum Gene Ther 2006; 17: 921–928.

    Article  CAS  Google Scholar 

  10. Alimi-Guez D, Leborgne C, Pembouong G, Van Wittenberghe L, Mignet N, Scherman D et al. Evaluation of the muscle gene transfer activity of a series of amphiphilic triblock copolymers. J Gene Med 2009; 11: 1114–1124.

    Article  CAS  Google Scholar 

  11. Sahay G, Batrakova EV, Kabanov AV . Different internalization pathways of polymeric micelles and unimers and their effects on vesicular transport. Bioconjug Chem 2008; 19: 2023–2029.

    Article  CAS  Google Scholar 

  12. Tharmalingam T, Ghebeh H, Wuerz T, Butler M . Pluronic enhances the robustness and reduces the cell attachment of mammalian cells. Mol Biotechnol 2008; 39: 167–177.

    Article  CAS  Google Scholar 

  13. Lee RC, River LP, Pan FS, Ji L, Wollmann RL . Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci USA 1992; 89: 4524–4528.

    Article  CAS  Google Scholar 

  14. Lemieux P, Guerin N, Paradis G, Proulx R, Chistyakova L, Kabanov A et al. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther 2000; 7: 986–991.

    Article  CAS  Google Scholar 

  15. Pitard B, Pollard H, Agbulut O, Lambert O, Vilquin JT, Cherel Y et al. A nonionic amphiphile agent promotes gene delivery in vivo to skeletal and cardiac muscles. Hum Gene Ther 2002; 13: 1767–1775.

    Article  CAS  Google Scholar 

  16. Yang Z, Sahay G, Sriadibhatla S, Kabanov AV . Amphiphilic block copolymers enhance cellular uptake and nuclear entry of polyplex-delivered DNA. Bioconjug Chem 2008; 19: 1987–1994.

    Article  CAS  Google Scholar 

  17. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF . Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000; 105: 1573–1587.

    Article  CAS  Google Scholar 

  18. Yan Z, Zak R, Zhang Y, Ding W, Godwin S, Munson K et al. Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia. J Virol 2004; 78: 2863–2874.

    Article  CAS  Google Scholar 

  19. Finn JD, Hui D, Downey HD, Dunn D, Pien GC, Mingozzi F et al. Proteasome inhibitors decrease AAV2 capsid derived peptide epitope presentation on MHC class I following transduction. Mol Ther 2010; 18: 135–142.

    Article  CAS  Google Scholar 

  20. Zhang T, Hu J, Ding W, Wang X . Doxorubicin augments rAAV-2 transduction in rat neuronal cells. Neurochem Int 2009; 55: 521–528.

    Article  CAS  Google Scholar 

  21. Ding W, Yan Z, Zak R, Saavedra M, Rodman DM, Engelhardt JF . Second-strand genome conversion of adeno-associated virus type 2 (AAV-2) and AAV-5 is not rate limiting following apical infection of polarized human airway epithelia. J Virol 2003; 77: 7361–7366.

    Article  CAS  Google Scholar 

  22. Denby L, Nicklin SA, Baker AH . Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene Ther 2005; 12: 1534–1538.

    Article  CAS  Google Scholar 

  23. Brinker AM, Ma J, Lipsky PE, Raskin I . Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 2007; 68: 732–766.

    Article  CAS  Google Scholar 

  24. Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C . Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25: 1341–1357.

    Article  CAS  Google Scholar 

  25. Trott A, West JD, Klaic L, Westerheide SD, Silverman RB, Morimoto RI et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 2008; 19: 1104–1112.

    Article  CAS  Google Scholar 

  26. Yang H, Chen D, Cui QC, Yuan X, Dou QP . Celastrol, a triterpene extracted from the Chinese ‘Thunder of God Vine,’ is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 2006; 66: 4758–4765.

    Article  CAS  Google Scholar 

  27. Jia SQ, Zhang FL, Ding W . Type 2 adeno-associated virus labled with Alexa Fluor 647 retained its native infectivity. Chin J Biochem Mol Biol 2008; 24: 1152–1157.

    CAS  Google Scholar 

  28. Ding W, Zhang L, Yan Z, Engelhardt JF . Intracellular trafficking of adeno-associated viral vectors. Gene Ther 2005; 12: 873–880.

    Article  CAS  Google Scholar 

  29. Hansen J, Qing K, Kwon HJ, Mah C, Srivastava A . Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol 2000; 74: 992–996.

    Article  CAS  Google Scholar 

  30. Vinitsky A, Michaud C, Powers JC, Orlowski M . Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 1992; 31: 9421–9428.

    Article  CAS  Google Scholar 

  31. Mellgren RL . Specificities of cell permeant peptidyl inhibitors for the proteinase activities of mu-calpain and the 20 S proteasome. J Biol Chem 1997; 272: 29899–29903.

    Article  CAS  Google Scholar 

  32. Johnson JS, Samulski RJ . Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol 2009; 83: 2632–2644.

    Article  CAS  Google Scholar 

  33. Zhang T, Hamza A, Cao X, Wang B, Yu S, Zhan CG et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 2008; 7: 162–170.

    Article  CAS  Google Scholar 

  34. Zhang T, Li Y, Yu Y, Zou P, Jiang Y, Sun D . Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J Biol Chem 2009; 284: 35381–35389.

    Article  CAS  Google Scholar 

  35. Zhong L, Qing K, Si Y, Chen L, Tan M, Srivastava A . Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90. J Biol Chem 2004; 279: 12714–12723.

    Article  CAS  Google Scholar 

  36. Feldman LJ, Pastore CJ, Aubailly N, Kearney M, Chen D, Perricaudet M et al. Improved efficiency of arterial gene transfer by use of poloxamer 407 as a vehicle for adenoviral vectors. Gene Ther 1997; 4: 189–198.

    Article  CAS  Google Scholar 

  37. Yang M, Ma QJ, Dang GT, Ma KT, Chen P, Zhou CY . Adeno-associated virus-mediated bone morphogenetic protein-7 gene transfer induces C2C12 cell differentiation into osteoblast lineage cells. Acta Pharmacol Sin 2005; 26: 963–968.

    Article  CAS  Google Scholar 

  38. Fang CH, Li BG, Fischer DR, Wang JJ, Runnels HA, Monaco JJ et al. Burn injury upregulates the activity and gene expression of the 20 S proteasome in rat skeletal muscle. Clin Sci (London) 2000; 99: 181–187.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Chinese Natural Science Foundation project 30771062, 30970161, and by the Beijing Municipal Fund for Advanced Higher Education 2008. We thank professor Wei-Ming Duan from the Department of Human Anatomy and Embryology at Capital Medical University for his comments for the revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Ding.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, FL., Jia, SQ., Zheng, SP. et al. Celastrol enhances AAV1-mediated gene expression in mice adipose tissues. Gene Ther 18, 128–134 (2011). https://doi.org/10.1038/gt.2010.120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.120

Keywords

This article is cited by

Search

Quick links