Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long-term, antidiabetogenic effects of GLP-1 gene therapy using a double-stranded, adeno-associated viral vector

Abstract

Diabetes is characterized by insulin resistance and a reduction in insulin secretion, leading to progressive β-cell failure and loss of β-cell mass. Its central therapeutic issues are how to restore glucose responsiveness of β-cells to normal and counteract defects in insulin secretion. Native glucagon-like peptide-1 (GLP-1), which makes β-cells competent and diabetic β-cells specifically more sensitive to glucose, has a major drawback of rapid inactivation. In this study, we describe the construction and analysis of a GLP-1 plasmid and double-stranded, adeno-associated viral (dsAAV) expression vector to overcome both the rapid degradation of native GLP-1 and limitations of gene therapy using standard single-stranded AAV. Our study results demonstrate that fasting blood glucose levels of db/db obese mice decreased significantly up to 4 months after a single injection of dsAAV GLP-1, and both insulin and circulating GLP-1 levels increased in dsAAV GLP-1-infected mice. These results demonstrate that dsAAV GLP-1 has long-term, efficient transgene expression with minimal toxicity and cellular immune responses. This study suggests that GLP-1 produced by dsAAV may be an alternative to the continuous infusions required for GLP-1 peptide therapy or daily injections of GLP-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Holz IV GG, Kuhtreiber WM, Habener JF . Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7–37). Nature 1993; 361: 362–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Efanova IB, Zaitsev SV, Zhivotovsky B, Kohler M, Efendic S, Orrenius S et al. Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration. J Biol Chem 1998; 273: 33501–33507.

    Article  CAS  PubMed  Google Scholar 

  3. Bernard C, Berthault MF, Saulnier C, Ktorza A . Neogenesis vs apoptosis as main components of pancreatic beta cell mass changes in glucose-infused normal and mildly diabetic adult rats. FASEB J 1999; 13: 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  4. Holst JJ, Gromada J . Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 2004; 287: E199–E206.

    Article  CAS  PubMed  Google Scholar 

  5. Holst JJ . The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87: 1409–1439.

    Article  CAS  PubMed  Google Scholar 

  6. Drucker DJ . Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 2003; 17: 161–171.

    Article  CAS  PubMed  Google Scholar 

  7. De Leon DD, Crutchlow MF, Ham JY, Stoffers DA . Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus. Int J Biochem Cell Biol 2006; 38: 845–859.

    Article  CAS  PubMed  Google Scholar 

  8. Xu G, Stoffers DA, Habener JF, Bonner-Weir S . Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270–2276.

    Article  CAS  PubMed  Google Scholar 

  9. Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B . Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 2002; 51: 1443–1452.

    Article  CAS  PubMed  Google Scholar 

  10. Mentlein R, Gallwitz B, Schmidt WE . Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214: 829–835.

    Article  CAS  PubMed  Google Scholar 

  11. Plamboeck A, Holst JJ, Carr RD, Deacon CF . Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia 2005; 48: 1882–1890.

    Article  CAS  PubMed  Google Scholar 

  12. Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF . Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76: 2043–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flotte TR, Carter BJ . Adeno-associated virus vectors for gene therapy. Gene Therapy 1995; 2: 357–362.

    CAS  PubMed  Google Scholar 

  14. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Klein RL, Meyer EM, Peel AL, Zolotukhin S, Meyers C, Muzyczka N et al. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 1998; 150: 183–194.

    Article  CAS  PubMed  Google Scholar 

  16. Kozlowski M, Olson DE, Rubin J, Lyszkowicz D, Campbell A, Thule PM . Adeno-associated viral delivery of a metabolically regulated insulin transgene to hepatocytes. Mol Cell Endocrinol 2007; 273: 6–15.

    Article  CAS  PubMed  Google Scholar 

  17. Flannery JG, Zolotukhin S, Vaquero MI, LaVail MM, Muzyczka N, Hauswirth WW . Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997; 94: 6916–6921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai KX, Tse LY, Leung C, Tam PK, Xu R, Sham MH . Suppression of lung tumor growth and metastasis in mice by adeno-associated virus-mediated expression of vasostatin. Clin Cancer Res 2008; 14: 939–949.

    Article  CAS  PubMed  Google Scholar 

  19. Polyak S, Mah C, Porvasnik S, Herlihy JD, Campbell-Thompson M, Byrne BJ et al. Gene delivery to intestinal epithelial cells in vitro and in vivo with recombinant adeno-associated virus types 1, 2 and 5. Dig Dis Sci 2008; 53: 1261–1270.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X . Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Therapy 2003; 10: 2105–2111.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Zhu T, Rehman KK, Bertera S, Zhang J, Chen C et al. Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes 2006; 55: 875–884.

    Article  CAS  PubMed  Google Scholar 

  22. Drucker DJ . Glucagon-like peptides. Diabetes 1998; 47: 159–169.

    Article  CAS  PubMed  Google Scholar 

  23. Kieffer TJ, Habener JF . The glucagon-like peptides. Endocr Rev 1999; 20: 876–913.

    Article  CAS  PubMed  Google Scholar 

  24. Arakawa M, Ebato C, Mita T, Hirose T, Kawamori R, Fujitani Y et al. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents. Biochem Biophys Res Commun 2009; 390: 809–814.

    Article  CAS  PubMed  Google Scholar 

  25. Kim Chung le T, Hosaka T, Yoshida M, Harada N, Sakaue H, Sakai T et al. Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochem Biophys Res Commun 2009; 390: 613–618.

    Article  PubMed  Google Scholar 

  26. Malhotra R, Singh L, Eng J, Raufman JP . Exendin-4, a new peptide from Heloderma suspectum venom, potentiates cholecystokinin-induced amylase release from rat pancreatic acini. Regul Pept 1992; 41: 149–156.

    Article  CAS  PubMed  Google Scholar 

  27. Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J et al. Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 1993; 268: 19650–19655.

    CAS  PubMed  Google Scholar 

  28. Bregenholt S, Moldrup A, Blume N, Karlsen AE, Nissen Friedrichsen B, Tornhave D et al. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun 2005; 330: 577–584.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar M, Hunag Y, Glinka Y, Prud’homme GJ, Wang Q . Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Therapy 2007; 14: 162–172.

    Article  CAS  PubMed  Google Scholar 

  30. Parsons GB, Souza DW, Wu H, Yu D, Wadsworth SG, Gregory RJ et al. Ectopic expression of glucagon-like peptide 1 for gene therapy of type II diabetes. Gene Therapy 2007; 14: 38–48.

    Article  CAS  PubMed  Google Scholar 

  31. Lee YS, Shin S, Shigihara T, Hahm E, Liu MJ, Han J et al. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes 2007; 56: 1671–1679.

    Article  CAS  PubMed  Google Scholar 

  32. Lee Y, Kwon MK, Kang ES, Park YM, Choi SH, Ahn CW et al. Adenoviral vector-mediated glucagon-like peptide 1 gene therapy improves glucose homeostasis in Zucker diabetic fatty rats. J Gene Med 2008; 10: 260–268.

    Article  CAS  PubMed  Google Scholar 

  33. Kotin RM . Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 1994; 5: 793–801.

    Article  CAS  PubMed  Google Scholar 

  34. Berns KI, Linden RM . The cryptic life style of adeno-associated virus. Bioessays 1995; 17: 237–245.

    Article  CAS  PubMed  Google Scholar 

  35. Monahan PE, Samulski RJ . Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 2000; 6: 433–440.

    Article  CAS  PubMed  Google Scholar 

  36. Coura Rdos S, Nardi NB . The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J 2007; 4: 99.

    Article  PubMed  Google Scholar 

  37. Tsunekawa S, Yamamoto N, Tsukamoto K, Itoh Y, Kaneko Y, Kimura T et al. Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J Endocrinol 2007; 193: 65–74.

    Article  CAS  PubMed  Google Scholar 

  38. Ferrari FK, Samulski T, Shenk T, Samulski RJ . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70: 3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McCarty DM, Monahan PE, Samulski RJ . Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy 2001; 8: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  41. Riedel MJ, Gaddy DF, Asadi A, Robbins PD, Kieffer TJ . DsAAV8-mediated expression of glucagon-like peptide-1 in pancreatic beta-cells ameliorates streptozotocin-induced diabetes. Gene Therapy 2010; 17: 171–180.

    Article  CAS  PubMed  Google Scholar 

  42. Green BD, Gault VA, Mooney MH, Irwin N, Bailey CJ, Harriott P et al. Novel dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1(7–36)amide have preserved biological activities in vitro conferring improved glucose-lowering action in vivo. J Mol Endocrinol 2003; 31: 529–540.

    Article  CAS  PubMed  Google Scholar 

  43. Seidah NG, Day R, Marcinkiewicz M, Benjannet S, Chretien M . Mammalian neural and endocrine pro-protein and pro-hormone convertases belonging to the subtilisin family of serine proteinases. Enzyme 1991; 45: 271–284.

    Article  CAS  PubMed  Google Scholar 

  44. Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G . Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 1992; 267: 16396–16402.

    CAS  PubMed  Google Scholar 

  45. Krysan DJ, Rockwell NC, Fuller RS . Quantitative characterization of furin specificity. Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides. J Biol Chem 1999; 274: 23229–23234.

    Article  CAS  PubMed  Google Scholar 

  46. Leiter EH . The genetics of diabetes susceptibility in mice. FASEB J 1989; 3: 2231–2241.

    Article  CAS  PubMed  Google Scholar 

  47. Schick RR, Zimmermann JP, vorm Walde T, Schusdziarra V . Peptides that regulate food intake: glucagon-like peptide 1-(7–36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1427–R1435.

    Article  CAS  PubMed  Google Scholar 

  48. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379: 69–72.

    Article  CAS  PubMed  Google Scholar 

  49. Doyle ME, Egan JM . Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113: 546–593.

    Article  CAS  PubMed  Google Scholar 

  50. Oyadomari S, Mori M . Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11: 381–389.

    Article  CAS  PubMed  Google Scholar 

  51. Clark KR, Liu X, McGrath JP, Johnson PR . Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 1999; 10: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Wilson who gave the vector pAdΔF6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H C Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S., Lee, H. Long-term, antidiabetogenic effects of GLP-1 gene therapy using a double-stranded, adeno-associated viral vector. Gene Ther 18, 155–163 (2011). https://doi.org/10.1038/gt.2010.119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.119

Keywords

This article is cited by

Search

Quick links