Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systemic delivery of AAV8 in utero results in gene expression in diaphragm and limb muscle: treatment implications for muscle disorders

Abstract

One of the major challenges in the treatment of primary muscle disorders, which often affect many muscle groups, is achieving efficient, widespread transgene expression in muscle. In utero gene transfer can potentially address this problem by accomplishing the gene delivery when the tissue mass is small and the immune system is immature. Earlier studies with systemic in utero adeno-associated viral (AAV) vector serotype 1 gene delivery to embryonic day 16 (E-16) pups resulted in high levels of transduction in diaphragm and intercostal muscles, but no detectable transgene expression in limb muscles. Recently, newer AAV serotypes, such as AAV8, have shown widespread and high transgene expression in skeletal muscles and diaphragm by systemic delivery in adult and neonatal mice. We tested AAV8 vector gene delivery by intraperitoneal administration in E-16 mice in utero. Using an AAV8 vector carrying a lacZ reporter gene, we observed high-level transduction of diaphragm and intercostal muscles and more moderate transduction of multiple limb muscles and heart. Our current studies show the potential of AAV8 to achieve widespread muscle transduction in utero and suggest its therapeutic potential for primary muscle disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE . Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  3. Ziegler RJ, Bercury SD, Fidler J, Zhao MA, Foley J, Taksir TV et al. Ability of adeno-associated virus serotype 8-mediated hepatic expression of acid alpha-glucosidase to correct the biochemical and motor function deficits of presymptomatic and symptomatic Pompe mice. Hum Gene Ther 2008; 19: 60–21.

    Google Scholar 

  4. Qiao C, Li J, Jiang J, Zhu X, Wang B, Li J et al. Myostatin propeptide gene delivery by adeno-associated virus serotype 8 vectors enhances muscle growth and ameliorates dystrophic phenotypes in mdx mice. Hum Gene Ther 2008; 19: 241–254.

    Article  CAS  PubMed  Google Scholar 

  5. Rodino-Klapac LR, Janssen PM, Montgomery CL, Coley BD, Chicoine LG, Clark KR et al. A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J Transl Med 2007; 5: 45.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  8. Louboutin JP, Wang L, Wilson JM . Gene transfer into skeletal muscle using novel AAV serotypes. J Gene Med 2005; 7: 442–451.

    Article  CAS  PubMed  Google Scholar 

  9. Sun B, Zhang H, Franco LM, Young SP, Schneider A, Bird A et al. Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther 2005; 11: 57–65.

    Article  CAS  PubMed  Google Scholar 

  10. Vandenberghe LH, Wang L, Somanathan S, Zhi Y, Figueredo J, Calcedo R et al. Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nat Med 2006; 12: 967–971.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas CE, Storm TA, Huang Z, Kay MA . Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davidoff AM, Gray JT, Ng CY, Zhang Y, Zhou J, Spence Y et al. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5 and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 2005; 11: 875–888.

    Article  CAS  PubMed  Google Scholar 

  13. Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006; 107: 2653–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nathwani AC, Gray JT, McIntosh J, Ng CY, Zhou J, Spence Y et al. Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood 2007; 109: 1414–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng H, Wolfe SH, Valencia V, Qian K, Shen L, Phillips MI et al. Efficient and persistent transduction of exocrine and endocrine pancreas by adeno-associated virus type 8. J Biomed Sci 2007; 14: 585–594.

    Article  CAS  PubMed  Google Scholar 

  16. Foust KD, Poirier A, Pacak CA, Mandel RJ, Flotte TR . Neonatal intraperitoneal or intravenous injections of recombinant adeno-associated virus type 8 transduce dorsal root ganglia and lower motor neurons. Hum Gene Ther 2008; 19: 61–70.

    Article  CAS  PubMed  Google Scholar 

  17. Nakai H, Fuess S, Storm TA, Muramatsu S, Nara Y, Kay MA . Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005; 79: 214–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Graham T, McIntosh J, Work LM, Nathwani A, Baker AH . Performance of AAV8 vectors expressing human factor IX from a hepatic-selective promoter following intravenous injection into rats. Genet Vaccines Ther 2008; 6: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bilbao R, Reay DP, Li J, Xiao X, Clemens PR . Patterns of gene expression from in utero delivery of adenoviral-associated vector serotype 1. Hum Gene Ther 2005; 16: 678–684.

    Article  CAS  PubMed  Google Scholar 

  20. Mitchell M, Jerebtsova M, Batshaw ML, Newman K, Ye X . Long-term gene transfer to mouse fetuses with recombinant adenovirus and adeno-associated virus (AAV) vectors. Gene Therapy 2000; 7: 1986–1992.

    Article  CAS  PubMed  Google Scholar 

  21. Reiser PJ, Greaser ML, Moss RL . Myosin heavy chain composition of single cells from avian slow skeletal muscle is strongly correlated with velocity of shortening during development. Dev Biol 1988; 129: 400–407.

    Article  CAS  PubMed  Google Scholar 

  22. Barany M . ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 1967; 50 (Suppl): 197–218.

    Article  PubMed Central  Google Scholar 

  23. Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 2005; 23: 1435–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther 2004; 10: 671–678.

    Article  CAS  PubMed  Google Scholar 

  25. Pruchnic R, Cao B, Peterson ZQ, Xiao X, Li J, Samulski RJ et al. The use of adeno-associated virus to circumvent the maturation-dependent viral transduction of muscle fibers. Hum Gene Ther 2000; 11: 521–536.

    Article  CAS  PubMed  Google Scholar 

  26. Bostick B, Ghosh A, Yue Y, Long C, Duan D . Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Therapy 2007; 14: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  27. Yue Y, Ghosh A, Long C, Bostick B, Smith BF, Kornegay JN et al. A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther 2008; 16: 1944–1952.

    Article  CAS  PubMed  Google Scholar 

  28. Bilbao R, Reay DP, Wu E, Zheng H, Biermann V, Kochanek S et al. Comparison of high-capacity and first-generation adenoviral vector gene delivery to murine muscle in utero. Gene Therapy 2005; 12: 39–47.

    Article  CAS  PubMed  Google Scholar 

  29. Boyle MP, Enke RA, Adams RJ, Guggino WB, Zeitlin PL . In utero AAV-mediated gene transfer to rabbit pulmonary epithelium. Mol Ther 2001; 4: 115–121.

    Article  CAS  PubMed  Google Scholar 

  30. Sabatino DE, Mackenzie TC, Peranteau W, Edmonson S, Campagnoli C, Liu YL et al. Persistent expression of hF.IX after tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther 200; 15: 1677–1685.

    Article  Google Scholar 

  31. Bouchard S, MacKenzie TC, Radu AP, Hayashi S, Peranteau WH, Chirmule N et al. Long-term transgene expression in cardiac and skeletal muscle following fetal administration of adenoviral or adeno-associated viral vectors in mice. J Gene Med 2003; 5: 941–950.

    Article  CAS  PubMed  Google Scholar 

  32. Reay DP, Bilbao R, Koppanati BM, Cai L, O'Day TL, Jiang Z et al. Full-length dystrophin gene transfer to the mdx mouse in utero. Gene Therapy 2008; 15: 531–536.

    Article  CAS  PubMed  Google Scholar 

  33. MacKenzie TC, Kobinger GP, Louboutin JP, Radu A, Javazon EH, Sena-Esteves M et al. Transduction of satellite cells after prenatal intramuscular administration of lentiviral vectors. J Gene Med 2005; 7: 50–58.

    Article  CAS  PubMed  Google Scholar 

  34. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA . The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3 and 9. J Virol 2006; 80: 9831–9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor PA, McElmurry RT, Lees CJ, Harrison DE, Blazar BR . Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients. Blood 2002; 99: 1870–1872.

    Article  PubMed  Google Scholar 

  36. O'Donoghue K, Fisk NM . Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 2004; 18: 853–875.

    Article  PubMed  Google Scholar 

  37. Lansdorp PM, Dragowska W, Mayani H . Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 1993; 178: 787–791.

    Article  CAS  PubMed  Google Scholar 

  38. Marshall E . Gene therapy death prompts review of adenovirus vector. Science 1999; 286: 2244–2245.

    Article  CAS  PubMed  Google Scholar 

  39. Lipshutz GS, Gruber CA, Cao Y, Hardy J, Contag CH, Gaensler KM . In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther 2001; 3: 284–292.

    Article  CAS  PubMed  Google Scholar 

  40. Winkel LP, Hagemans ML, van Doorn PA, Loonen MC, Hop WJ, Reuser AJ et al. The natural course of non-classic Pompe's disease; a review of 225 published cases. J Neurol 2005; 252: 875–884.

    Article  PubMed  Google Scholar 

  41. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Li J, Samulski RJ, Xiao X . Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 1997; 71: 5236–5243.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Bilbao R, Reay DP, Hughes T, Biermann V, Volpers C, Goldberg L et al. Fetal muscle gene transfer is not enhanced by an RGD capsid modification to high-capacity adenoviral vectors. Gene Therapy 2003; 10: 1821–1829.

    Article  CAS  PubMed  Google Scholar 

  44. Senoo M, Matsubara Y, Fujii K, Nagasaki Y, Hiratsuka M, Kure S et al. Adenovirus-mediated in utero gene transfer in mice and guinea pigs: tissue distribution of recombinant adenovirus determined by quantitative TaqMan-polymerase chain reaction assay. Mol Genet Metab 2000; 69: 269–276.

    Article  CAS  PubMed  Google Scholar 

  45. Pan D, Gunther R, Duan W, Wendell S, Kaemmerer W, Kafri T et al. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol Ther 2002; 6: 19–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant R01 AR050565 (PRC) and R01 AR45967 (XX) from the NIH. This material is also the result of work supported by VA resources (VA Healthcare System, Pittsburgh, PA, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P R Clemens.

Additional information

Work was done in Pittsburgh, PA, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koppanati, B., Li, J., Xiao, X. et al. Systemic delivery of AAV8 in utero results in gene expression in diaphragm and limb muscle: treatment implications for muscle disorders. Gene Ther 16, 1130–1137 (2009). https://doi.org/10.1038/gt.2009.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.71

Keywords

This article is cited by

Search

Quick links