Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery

Abstract

Adeno-associated virus (AAV) has become a leading gene transfer vector for striated muscles. However, the AAV vectors also exhibit broad tropisms after systemic delivery. In an attempt to improve muscle tropism, we inserted a 7-amino-acid (ASSLNIA) muscle-targeting peptide (MTP) in the capsids of AAV2 at residue 587 or 588, generating AAV587MTP and AAV588MTP. In vitro studies showed that both viruses diminished their infectivity on non-muscle cell lines as well as on un-differentiated myoblasts; however, preserved or enhanced their infectivity on differentiated myotubes. AAV587MTP, but not AAV588MTP, also abolished its heparin-binding capacity and infected myotubes in a heparin-independent manner. Furthermore, in vivo studies by intravenous vector administration in mice showed that AAV587MTP enhanced its tropism to various muscles and particularly to the heart (24.3-fold of unmodified AAV2), whereas reduced its tropism to the non-muscle tissues such as the liver, lungs, spleen and so on. This alteration of tissue tropism is not simply because of the loss of heparin-binding, as a mutant AAV2 (AAVHBSMut) containing heparin-binding site mutations lost infectivity on both non-muscle and muscle cells. Furthermore, free MTP peptide, but not the scrambled control peptide, competitively inhibited AAV587MTP infection on myotubes. These results suggest that AAV2 could be re-targeted to the striated muscles by a MTP inserted after residue 587 of the capsids. This proof of principle study showed first evidence of peptide-directed muscle targeting on systemic administration of AAV vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cox GA, Cole NM, Matsumura K, Phelps SF, Hauschka SD, Campbell KP et al. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 1993; 364: 725–729.

    Article  CAS  PubMed  Google Scholar 

  2. Amalfitano A, McVie-Wylie AJ, Hu H, Dawson TL, Raben N, Plotz P et al. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Proc Natl Acad Sci USA 1999; 96: 8861–8866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 1996; 93: 14082–14087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Greelish JP, Su LT, Lankford EB, Burkman JM, Chen H, Konig SK et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nat Med 1999; 5: 439–443.

    Article  CAS  PubMed  Google Scholar 

  5. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  6. Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A . Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1992; 1: 363–369.

    Article  CAS  PubMed  Google Scholar 

  7. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther 2004; 10: 671–678.

    Article  CAS  PubMed  Google Scholar 

  9. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–261.

    Article  CAS  PubMed  Google Scholar 

  10. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  12. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Therapy 2000; 7: 24–30.

    Article  CAS  PubMed  Google Scholar 

  13. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  15. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A . Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999; 5: 71–77.

    Article  CAS  PubMed  Google Scholar 

  16. Kashiwakura Y, Tamayose K, Iwabuchi K, Hirai Y, Shimada T, Matsumoto K et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol 2005; 79: 609–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ . Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 2006; 80: 8961–8969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barry MA, Dower WJ, Johnston SA . Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med 1996; 2: 299–305.

    Article  CAS  PubMed  Google Scholar 

  19. Muller OJ, Kaul F, Weitzman MD, Pasqualini R, Arap W, Kleinschmidt JA et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003; 21: 1040–1046.

    Article  PubMed  Google Scholar 

  20. Wu P, Xiao W, Conlon T, Hughes J, Agbandje-McKenna M, Ferkol T et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 2000; 74: 8635–8647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loiler SA, Conlon TJ, Song S, Tang Q, Warrington KH, Agarwal A et al. Targeting recombinant adeno-associated virus vectors to enhance gene transfer to pancreatic islets and liver. Gene Ther 2003; 10: 1551–1558.

    Article  CAS  PubMed  Google Scholar 

  22. Grifman M, Trepel M, Speece P, Gilbert LB, Arap W, Pasqualini R et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 2001; 3: 964–975.

    Article  CAS  PubMed  Google Scholar 

  23. Nicklin SA, Buening H, Dishart KL, de Alwis M, Girod A, Hacker U et al. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther 2001; 4: 174–181.

    Article  CAS  PubMed  Google Scholar 

  24. White SJ, Nicklin SA, Buning H, Brosnan MJ, Leike K, Papadakis ED et al. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 2004; 109: 513–519.

    Article  CAS  PubMed  Google Scholar 

  25. Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N et al. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 2006; 13: 683–693.

    Article  CAS  PubMed  Google Scholar 

  26. Samoylova TI, Smith BF . Elucidation of muscle-binding peptides by phage display screening. Muscle Nerve 1999; 22: 460–466.

    Article  CAS  PubMed  Google Scholar 

  27. Samoylov AM, Samoylova TI, Hartell MG, Pathirana ST, Smith BF, Vodyanoy V . Recognition of cell-specific binding of phage display derived peptides using an acoustic wave sensor. Biomol Eng 2002; 18: 269–272.

    Article  CAS  PubMed  Google Scholar 

  28. Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99: e3–e9.

    Article  CAS  PubMed  Google Scholar 

  29. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  PubMed  Google Scholar 

  30. Shi W, Arnold GS, Bartlett JS . Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum Gene Ther 2001; 12: 1697–1711.

    Article  CAS  PubMed  Google Scholar 

  31. Park PW, Reizes O, Bernfield M . Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 2000; 275: 29923–29926.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas CE, Storm TA, Huang Z, Kay MA . Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Margalit H, Fischer N, Ben-Sasson SA . Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem 1993; 268: 19228–19231.

    CAS  PubMed  Google Scholar 

  34. Huttner NA, Girod A, Perabo L, Edbauer D, Kleinschmidt JA, Buning H et al. Genetic modifications of the adeno-associated virus type 2 capsid reduce the affinity and the neutralizing effects of human serum antibodies. Gene Therapy 2003; 10: 2139–2147.

    Article  CAS  PubMed  Google Scholar 

  35. Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 10405–10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwede T, Kopp J, Guex N, Peitsch MC . SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003; 31: 3381–3385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guex N, Peitsch MC . SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997; 18: 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  38. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J . Immune responses to adenovirus and adeno-associated virus in humans. Gene Therapy 1999; 6: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  39. Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 2006; 107: 1810–1817.

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Samulski RJ, Xiao X . Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 1997; 71: 5236–5243.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Zhong Wang for helpful advice and Ms Chunlian Chen for technical assistance. This work is part of C Yu's PhD thesis at the University of Pittsburgh. It is supported by NIH grants AR45967 and AR50595 to X Xiao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, CY., Yuan, Z., Cao, Z. et al. A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery. Gene Ther 16, 953–962 (2009). https://doi.org/10.1038/gt.2009.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.59

Keywords

This article is cited by

Search

Quick links