Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Subconjunctival gene delivery of the transcription factor GA-binding protein delays corneal neovascularization in a mouse model

Abstract

Corneal neovascularization can reduce visual acuity. GA-binding protein (GABP) is a transcription factor that regulates the expression of target genes including vascular endothelial growth factor (VEGF) and roundabout4 (Robo4), which participate in pathologic angiogenesis. We assessed whether intraocular injection of the GABP gene affects the growth of new corneal blood vessels in a mouse ocular neovascularization model. Transfection of human GABPα and GABPβ gene (GABPα/β) into human conjunctival epithelial cells resulted in decreased VEGF and Robo4 expression. Three groups of mice underwent chemical and mechanical denudation of the corneal epithelium. Subsequently, two groups were administered subconjunctival injection of lipoplexes carrying plasmid DNA encoding for human GABPα/β or an empty plasmid DNA at 1-week intervals. The third group served as an experimental control. In vivo delivery of human GABPα/β into mouse neovascularized cornea reduced VEGF and Robo4 gene expression. Biomicroscopic examination showed that, at 1 week after one or two injections, GABPα/β-treated eyes had significantly less neovascularized corneal area than did eyes treated with the empty vector. Histologic examination showed significantly less vascularized area and fewer blood vessels in the GABP-treated group at 1 week after injections. However, these angiosuppressive effects were weakened at 2 weeks after injections. Our results indicate that subconjunctival GABP gene delivery delays corneal neovascularization for up to 2 weeks in a mouse model of deliberate corneal injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kvanta A, Sarman S, Fagerholm P, Seregard S, Steen B . Expression of matrix metalloproteinase-2 and vascular endothelial growth factor in inflammation-associated corneal neovascularization. Exp Eye Res 2000; 70: 419–428.

    Article  CAS  Google Scholar 

  2. Chang JH, Gabison EE, Kato T, Azar DT . Corneal neovascualrization. Curr Opin Ophthalmol 2001; 12: 242–249.

    Article  CAS  Google Scholar 

  3. Gabison E, Chang JH, Hernandez-Quintela E, Javier J, Lu PC, Ye H et al. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res 2004; 78: 579–589.

    Article  CAS  Google Scholar 

  4. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  Google Scholar 

  5. Lai YK, Shen WY, Brankov M, Lai CM, Constable IJ, Rakoczy PE . Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Therapy 2002; 9: 804–813.

    Article  CAS  Google Scholar 

  6. Lai CM, Spilsbury K, Brankov M, Zaknich T, Rakoczy PE . Inhibition of corneal neovascularization by recombinant adenovirus mediated antisense VEGF RNA. Exp Eye Res 2002; 75: 625–634.

    Article  CAS  Google Scholar 

  7. Campochiaro PA . Gene therapy for ocular neovascularization. Curr Gene Ther 2007; 7: 25–33.

    Article  CAS  Google Scholar 

  8. Klausner EA, Peer D, Chapman RL, Multack RF, Andurkar SV . Corneal gene therapy. J Control Release 2007; 124: 107–133.

    Article  CAS  Google Scholar 

  9. Vázquez F, Hastings G, Ortega MA, Lane TF, Oikemus S, Lombardo M et al. METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem 1999; 274: 23349–23357.

    Article  Google Scholar 

  10. Ambati BK, Joussen AM, Ambati J, Moromizato Y, Guha C, Javaherian K et al. Angiostatin inhibits and regresses corneal neovascularization. Arch Ophthalmol 2002; 120: 1063–1068.

    Article  CAS  Google Scholar 

  11. Wu PC, Liu CC, Chen CH, Kou HK, Shen SC, Lu CY et al. Inhibition of experimental angiogenesis of cornea by somatostatin. Graefes Arch Clin Exp Ophthalmol 2003; 241: 63–69.

    Article  CAS  Google Scholar 

  12. Ma DH, Zhang F, Shi W, Yao JY, Hsiao CH, Wu HC et al. Expression of tissue inhibitor of metalloproteinase-4 in normal human corneal cells and experimental corneal neovascularization. Ophthalmic Res 2003; 35: 199–207.

    Article  CAS  Google Scholar 

  13. Shafiee A, Penn JS, Krutzsch HC, Inman JK, Roberts DD, Blake DA . Inhibition of retinal angiogenesis by peptides derived from thrombospondin-1. Invest Ophthalmol Vis Sci 2000; 41: 2378–2388.

    CAS  PubMed  Google Scholar 

  14. Shao C, Sima J, Zhang SX, Jin J, Reinach P, Wang Z et al. Suppression of corneal neovascularization by PEDF release from human amniotic membranes. Invest Ophthalmol Vis Sci 2004; 45: 1758–1762.

    Article  Google Scholar 

  15. Dueñas Z, Torner L, Corbacho AM, Ochoa A, Gutiérrez-Ospina G, López-Barrera F et al. Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules. Invest Ophthalmol Vis Sci 1999; 40: 2498–2505.

    PubMed  Google Scholar 

  16. Yoon KC, Ahn KY, Lee JH, Chun BJ, Park SW, Seo MS et al. Lipid-mediated delivery of brain-specific angiogenesis inhibitor 1 gene reduces corneal neovascularization in an in vivo rabbit model. Gene Therapy 2005; 12: 617–624.

    Article  CAS  Google Scholar 

  17. Rosmarin AG, Resendes KK, Yang Z, Mc Millan JN, Fleming SL . GA-binding protein transcription factor: a review of GABP as an integrator of intracellular signaling and protein–protein interactions. Blood Cells Mol Dis 2004; 32: 143–154.

    Article  CAS  Google Scholar 

  18. Batchelor AH, Piper DE, de la Brousse FC, Mcknight SL, Wolberger C . The structure of GABPalpha/beta: an ETS domain-ankyrin repeat heterodimer bound to DNA. Science 1998; 279: 1037–1041.

    Article  CAS  Google Scholar 

  19. Hauck L, Kaba RG, Lipp M, Dietz R, von Harsdorf R . Regulation of E2F1-dependent gene transcription and apoptosis by the ETS-related transcription factor GABPγ1. Mol Cell Biol 2002; 22: 2147–2158.

    Article  CAS  Google Scholar 

  20. O'Leary DA, Koleski D, Kola I, Hertzog PJ, Ristevski S . Identification and expression analysis of alternative transcripts of the mouse GA-binding protein (Gabp) subunits alpha and beta1. Gene 2005; 344: 79–92.

    Article  CAS  Google Scholar 

  21. Jeong BC, Kim MY, Lee JH, Kee HJ, Kho DH, Han KE et al. Brain-specific angiogenesis inhibitor 2 regulates VEGF through GABP that acts as a transcriptional repressor. FEBS Lett 2006; 580: 669–676.

    Article  CAS  Google Scholar 

  22. Yang ZF, Mott S, Rosmarin AG . The Ets transcription factor GABP is required for cell-cycle progression. Nat Cell Biol 2007; 9: 339–346.

    Article  Google Scholar 

  23. Okada Y, Yano K, Jin E, Funahashi N, Kitayama M, Doi T et al. A three-kilobase fragment of the human Robo4 promoter directs cell type-specific expression in endothelium. Circ Res 2007; 100: 1712–1722.

    Article  CAS  Google Scholar 

  24. Bedell VM, Yeo SY, Park KW, Chung J, Seth P, Shivalingappa V et al. Roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci USA 2005; 102: 6373–6378.

    Article  CAS  Google Scholar 

  25. Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R . Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J 2005; 19: 121–123.

    Article  CAS  Google Scholar 

  26. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nature Med 2008; 14: 448–453.

    Article  CAS  Google Scholar 

  27. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D'Amato RJ . A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 1996; 37: 1625–1632.

    CAS  PubMed  Google Scholar 

  28. Demir T, Celiker UO, Kükner A, Mogulkoç R, Celebi S, Celiker H . Effect of Octreotide on experimental corneal neovascularization. Acta Ophthalmol Scand 1999; 77: 386–390.

    Article  CAS  Google Scholar 

  29. Knop E, Knop N . Anatomy and immunology of the ocular surface. Chem Immunol Allergy 2007; 92: 36–49.

    Article  CAS  Google Scholar 

  30. Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature 2006; 443: 993–997.

    Article  CAS  Google Scholar 

  31. Kim B, Tang Q, Biswas PS, Xu J, Schiffelers RM, Xie FY et al. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol 2004; 165: 2177–2185.

    Article  CAS  Google Scholar 

  32. Hurmeric V, Mumcuoglu T, Erdurman C, Kurt B, Dagli O, Durukan AH . Effect of subconjunctival bevacizumab (Avastin) on experimental corneal neovascularization in guinea pigs. Cornea 2008; 27: 357–362.

    Article  Google Scholar 

  33. Kim TI, Kim SW, Kim S, Kim T, Kim EK . Inhibition of experimental corneal neovascularization by using subconjunctival injection of bevacizumab (Avastin). Cornea 2008; 27: 349–352.

    Article  Google Scholar 

  34. You IC, Kang IS, Lee SH, Yoon KC . Therapeutic effect of subconjunctival injection of bevacizumab in the treatment of corneal noevascularization. Acta Ophthalmol 2009; 87 (in press).

    Article  CAS  Google Scholar 

  35. Okada Y, Jin E, Nikolova-Krstevski V, Yano K, Liu J, Beeler D et al. A GABP-binding element in the Robo4 promoter is necessary for endothelial expression in vivo. Blood 2008; 112: 2336–2339.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hong-Jae Chae (Chonnam National University Hospital) for assisting with the statistical analysis. This work was supported by the Korea Science and Engineering Foundation through the Medical Research Center for Gene Regulation (R13-2002-013-04001-0) at Chonnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K K Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, K., Bae, J., Park, H. et al. Subconjunctival gene delivery of the transcription factor GA-binding protein delays corneal neovascularization in a mouse model. Gene Ther 16, 973–981 (2009). https://doi.org/10.1038/gt.2009.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.50

Keywords

This article is cited by

Search

Quick links