Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

VSV virotherapy improves chemotherapy by triggering apoptosis due to proteasomal degradation of Mcl-1

Abstract

Overexpression of myeloid cell leukemia 1 protein (Mcl-1), an anti-apoptotic B-cell lymphoma 2 (Bcl-2) family member, contributes to chemotherapy resistance of tumors. The short half-life of Mcl-1 makes it an interesting target for therapeutic agents that negatively interfere with cellular protein biosynthesis, such as oncolytic viruses. Vesicular Stomatitis Virus (VSV) has been established as the oncolytic virus that efficiently disrupts de novo protein biosynthesis of infected cells. Here, we show that after VSV infection, Mcl-1 protein levels rapidly declined, whereas the expression of other members of the Bcl-2 family remained unchanged. Mcl-1 elimination was a consequence of proteasomal degradation, as overexpression of a degradation-resistant Mcl-1 mutant restored Mcl-1 levels. Mcl-1 rescue inhibited apoptosis and thereby confirmed that Mcl-1 downregulation contributes to VSV-induced apoptosis. In vitro, VSV virotherapy in combination with chemotherapy revealed an enhanced therapeutic effect compared with the single treatments, which could be reverted by Mcl-1 rescue or RNA interference (RNAi)-mediated knockdown of pro-apoptotic Bax and Bak proteins. Finally, in a tumor mouse model, combinations of doxorubicin and VSV showed a superior therapeutic efficacy compared with VSV or doxorubicin alone. In summary, our data indicate that VSV virotherapy is an attractive strategy to overcome tumor resistance against conventional chemotherapy by elimination of Mcl-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Barber GN . Vesicular stomatitis virus as an oncolytic vector. Viral Immunol 2004; 17: 516–527.

    Article  CAS  Google Scholar 

  2. Balachandran S, Porosnicu M, Barber GN . Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or myc function and involves the induction of apoptosis. J Virol 2001; 75: 3474–3479.

    Article  CAS  Google Scholar 

  3. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–825.

    Article  CAS  Google Scholar 

  4. Balachandran S, Barber GN . Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 2004; 5: 51–65.

    Article  CAS  Google Scholar 

  5. Barber GN . VSV-tumor selective replication and protein translation. Oncogene 2005; 24: 7710–7719.

    Article  CAS  Google Scholar 

  6. Blondel D, Harmison GG, Schubert M . Role of matrix protein in cytopathogenesis of vesicular stomatitis virus. J Virol 1990; 64: 1716–1725.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Renukaradhya GJ, Khan MA, Shaji D, Brutkiewicz RR . The VSV matrix protein impairs CD1d-mediated antigen presentation through activation of the p38 MAPK pathway. J Virol 2008; 82: 12535–12542.

    Article  CAS  Google Scholar 

  8. Black BL, Lyles DS . Vesicular stomatitis virus matrix protein inhibits host cell-directed transcription of target genes in vivo. J Virol 1992; 66: 4058–4064.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmed M, Lyles DS . Effect of vesicular stomatitis virus matrix protein on transcription directed by host RNA polymerases I, II and III. J Virol 1998; 72: 8413–8419.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Faria PA, Chakraborty P, Levay A, Barber GN, Ezelle HJ, Enninga J et al. VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway. Mol Cell 2005; 17: 93–102.

    Article  CAS  Google Scholar 

  11. Petersen JM, Her LS, Varvel V, Lund E, Dahlberg JE . The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes. Mol Cell Biol 2000; 20: 8590–8601.

    Article  CAS  Google Scholar 

  12. Petersen JM, Her LS, Dahlberg JE . Multiple vesiculoviral matrix proteins inhibit both nuclear export and import. Proc Natl Acad Sci USA 2001; 98: 8590–8595.

    Article  CAS  Google Scholar 

  13. von KC, van Deursen JM, Rodrigues JP, Sitterlin D, Bachi A, Wu X et al. Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98. Mol Cell 2000; 6: 1243–1252.

    Article  Google Scholar 

  14. Enninga J, Levy DE, Blobel G, Fontoura BM . Role of nucleoporin induction in releasing an mRNA nuclear export block. Science 2002; 295: 1523–1525.

    Article  CAS  Google Scholar 

  15. Connor JH, Lyles DS . Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1. J Virol 2002; 76: 10177–10187.

    Article  CAS  Google Scholar 

  16. Connor JH, Lyles DS . Inhibition of host and viral translation during vesicular stomatitis virus infection. eIF2 is responsible for the inhibition of viral but not host translation. J Biol Chem 2005; 280: 13512–13519.

    Article  CAS  Google Scholar 

  17. Cory S, Huang DC, Adams JM . The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 2003; 22: 8590–8607.

    Article  CAS  Google Scholar 

  18. Warr MR, Shore GC . Unique biology of mcl-1: therapeutic opportunities in cancer. Curr Mol Med 2008; 8: 138–147.

    Article  CAS  Google Scholar 

  19. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Sr M et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 2007; 104: 19512–19517.

    Article  CAS  Google Scholar 

  20. Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Bock BC et al. Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 2008; 27: 6646–6656.

    Article  CAS  Google Scholar 

  21. Cuconati A, Mukherjee C, Perez D, White E . DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 2003; 17: 2922–2932.

    Article  CAS  Google Scholar 

  22. Wirth T, Kuhnel F, Fleischmann-Mundt B, Woller N, Djojosubroto M, Rudolph KL et al. Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1. Cancer Res 2005; 65: 7393–7402.

    Article  CAS  Google Scholar 

  23. Clohessy JG, Zhuang J, Brady HJ . Characterisation of Mcl-1 cleavage during apoptosis of haematopoietic cells. Br J Haematol 2004; 125: 655–665.

    Article  CAS  Google Scholar 

  24. Herrant M, Jacquel A, Marchetti S, Belhacene N, Colosetti P, Luciano F et al. Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene 2004; 23: 7863–7873.

    Article  CAS  Google Scholar 

  25. Michels J, O'Neill JW, Dallman CL, Mouzakiti A, Habens F, Brimmell M et al. Mcl-1 is required for Akata6 B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage. Oncogene 2004; 23: 4818–4827.

    Article  CAS  Google Scholar 

  26. Weng C, Li Y, Xu D, Shi Y, Tang H . Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J Biol Chem 2005; 280: 10491–10500.

    Article  CAS  Google Scholar 

  27. Gadaleta P, Perfetti X, Mersich S, Coulombie F . Early activation of the mitochondrial apoptotic pathway in Vesicular Stomatitis virus-infected cells. Virus Res 2005; 109: 65–69.

    Article  CAS  Google Scholar 

  28. Gaddy DF, Lyles DS . Vesicular stomatitis viruses expressing wild-type or mutant M proteins activate apoptosis through distinct pathways. J Virol 2005; 79: 4170–4179.

    Article  CAS  Google Scholar 

  29. Gaddy DF, Lyles DS . Oncolytic vesicular stomatitis virus induces apoptosis via signaling through PKR, Fas, and Daxx. J Virol 2007; 81: 2792–2804.

    Article  CAS  Google Scholar 

  30. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A . Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 2007; 315: 1398–1401.

    Article  CAS  Google Scholar 

  31. Sharif-Askari E, Nakhaei P, Oliere S, Tumilasci V, Hernandez E, Wilkinson P et al. Bax-dependent mitochondrial membrane permeabilization enhances IRF3-mediated innate immune response during VSV infection. Virology 2007; 365: 20–33.

    Article  CAS  Google Scholar 

  32. Lallemand C, Blanchard B, Palmieri M, Lebon P, May E, Tovey MG . Single-stranded RNA viruses inactivate the transcriptional activity of p53 but induce NOXA-dependent apoptosis via post-translational modifications of IRF-1, IRF-3 and CREB. Oncogene 2007; 26: 328–338.

    Article  CAS  Google Scholar 

  33. Zhong Q, Gao W, Du F, Wang X . Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 2005; 121: 1085–1095.

    Article  CAS  Google Scholar 

  34. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.

    Article  CAS  Google Scholar 

  35. Maiuri MC, Le TG, Criollo A, Rain JC, Gautier F, Juin P et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 2007; 26: 2527–2539.

    Article  CAS  Google Scholar 

  36. Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, di-Harel S et al. Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 2007; 3: 561–568.

    Article  CAS  Google Scholar 

  37. Tumilasci VF, Oliere S, Nguyen TL, Shamy A, Bell J, Hiscott J . Targeting the apoptotic pathway with BCL-2 inhibitors sensitizes primary chronic lymphocytic leukemia cells to vesicular stomatitis virus-induced oncolysis. J Virol 2008; 82: 8487–8499.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Meriame Nassiri and Gisela Weier for their excellent assistance in animal experiments, preparation of tissue sections and histological stainings. Financial support was provided by: EU-project, Netsensor' (Contract no. 12948), Deutsche Forschungsgemeinschaft (DFG) clinical research group KFO119/2, DFG KU 1213/3-2, Deutsche Krebshilfe 10-2078-Ku2. We thank the Foundation of the German Economy (Stiftung der Deutschen Wirtschaft) for financing the position of Peter Schache.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Kühnel or S Kubicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schache, P., Gürlevik, E., Strüver, N. et al. VSV virotherapy improves chemotherapy by triggering apoptosis due to proteasomal degradation of Mcl-1. Gene Ther 16, 849–861 (2009). https://doi.org/10.1038/gt.2009.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.39

Keywords

This article is cited by

Search

Quick links