Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Restoration of cellular function of mesenchymal stem cells from a hypophosphatasia patient

Abstract

Mesenchymal stem cells (MSCs) can differentiate into multiple cell lineages and are used for regenerative treatments for a variety of diseases. However, the patient's cells cannot be used to treat genetic diseases. Allogeneic cells can serve as an alternative but long-term survival is uncertain. Our experience of allo-transplantation to a patient with hypophosphatasia, which is caused by mutations of the tissue non-specific alkaline phosphatase (TNSALP) gene resulting in low serum alkaline phosphatase (ALP) activity and skeletal deformity, did not improve these clinical characteristics. Therefore, we sought to use autologous MSCs for the treatment of hypophosphatasia. MSCs derived from the patient's bone marrow had a similar profile when compared with well-reported MSCs. However, the MSCs had extremely low ALP activity and could not produce a mineralized bone matrix even under the osteogenic culture conditions. We therefore transduced a retroviral vector with TNSALP promoter-driven TNSALP gene in the MSCs. In the culture condition, the MSCs had about 7-fold higher ALP activity than did mock-transduced MSCs, and showed mineralization as well as bone-specific markers. Furthermore, the MSCs, but not mock-transduced MSCs, newly formed bone at the frequency of 50% in nude rats. Transplantation of the TNSALP-transduced autologous MSCs might become a new therapy for hypophosphatasia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA, Mulivor RA et al. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci USA 1988; 85: 7666–7669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zurutuza L, Muller F, Gibrat JF, Taillandier A, Simon-Bouy B, Serre JL et al. Correlations of genotype and phenotype in hypophosphatasia. Hum Mol Genet 1999; 8: 1039–1046.

    Article  CAS  PubMed  Google Scholar 

  3. Whyte MP, Walkenhorst DA, Fedde KN, Henthorn PS, Hill CS . Hypophosphatasia: levels of bone alkaline phosphatase immunoreactivity in serum reflect disease severity. J Clin Endocrinol Metab 1996; 81: 2142–2148.

    CAS  PubMed  Google Scholar 

  4. Whyte MP, Kurtzberg J, McAlister WH, Mumm S, Podgornik MN, Coburn SP et al. Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 2003; 18: 624–636.

    Article  PubMed  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  6. Ohgushi H, Caplan AI . Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 1999; 48: 913–927.

    Article  CAS  PubMed  Google Scholar 

  7. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211–228.

    Article  CAS  PubMed  Google Scholar 

  8. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP . Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001; 44: 1928–1942.

    Article  CAS  PubMed  Google Scholar 

  9. Ikeda E, Hirose M, Kotobuki N, Shimaoka H, Tadokoro M, Maeda M et al. Osteogenic differentiation of human dental papilla mesenchymal cells. Biochem Biophys Res Commun 2006; 342: 1257–1262.

    Article  CAS  PubMed  Google Scholar 

  10. Caplan AI, Bruder SP . Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001; 7: 259–264.

    Article  CAS  PubMed  Google Scholar 

  11. Kotobuki N, Hirose M, Takakura Y, Ohgushi H . Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs 2004; 28: 33–39.

    Article  PubMed  Google Scholar 

  12. Ohgushi H, Kotobuki N, Funaoka H, Machida H, Hirose M, Tanaka Y et al. Tissue engineered ceramic artificial joint--ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials 2005; 26: 4654–4661.

    Article  CAS  PubMed  Google Scholar 

  13. Morishita T, Honoki K, Ohgushi H, Kotobuki N, Matsushima A, Takakura Y . Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients' mesenchymal stem cells. Artif Organs 2006; 30: 115–118.

    Article  PubMed  Google Scholar 

  14. Tadokoro M, Kanai R, Taketani T, Uchio Y, Yamaguchi S, Ohgushi H . New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr 2009; 154: 924–930.

    Article  CAS  PubMed  Google Scholar 

  15. Kotobuki N, Katsube Y, Katou Y, Tadokoro M, Hirose M, Ohgushi H . In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplant 2008; 17: 705–712.

    Article  PubMed  Google Scholar 

  16. Hurwitz DR, Kirchgesser M, Merrill W, Galanopoulos T, McGrath CA, Emami S et al. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum Gene Ther 1997; 8: 137–156.

    Article  CAS  PubMed  Google Scholar 

  17. Dayoub H, Dumont RJ, Li JZ, Dumont AS, Hankins GR, Kallmes DF et al. Human mesenchymal stem cells transduced with recombinant bone morphogenetic protein-9 adenovirus promote osteogenesis in rodents. Tissue Eng 2003; 9: 347–356.

    Article  CAS  PubMed  Google Scholar 

  18. Pochampally RR, Horwitz EM, DiGirolamo CM, Stokes DS, Prockop DJ . Correction of a mineralization defect by overexpression of a wild-type cDNA for COL1A1 in marrow stromal cells (MSCs) from a patient with osteogenesis imperfecta: a strategy for rescuing mutations that produce dominant-negative protein defects. Gene Therapy 2005; 12: 1119–1125.

    Article  CAS  PubMed  Google Scholar 

  19. Sawai H, Kanazawa N, Tsukahara Y, Koike K, Udagawa H, Koyama K et al. Severe perinatal hypophosphatasia due to homozygous deletion of T at nucleotide 1559 in the tissue nonspecific alkaline phosphatase gene. Prenat Diagn 2003; 23: 743–746.

    Article  CAS  PubMed  Google Scholar 

  20. Mornet E, Taillandier A, Peyramaure S, Kaper F, Muller F, Brenner R et al. Identification of fifteen novel mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene in European patients with severe hypophosphatasia. Eur J Hum Genet 1998; 6: 308–314.

    Article  CAS  PubMed  Google Scholar 

  21. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309–313.

    Article  CAS  PubMed  Google Scholar 

  22. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99: 8932–8937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cahill RA, Wenkert D, Perlman SA, Steele A, Coburn SP, McAlister WH et al. Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 2007; 92: 2923–2930.

    Article  CAS  PubMed  Google Scholar 

  24. Caplan AI . Osteogenesis imperfecta, rehabilitation medicine, fundamental research and mesenchymal stem cells. Connect Tissue Res 1995; 31: S9–14.

    Article  CAS  PubMed  Google Scholar 

  25. Cai G, Michigami T, Yamamoto T, Yasui N, Satomura K, Yamagata M et al. Analysis of localization of mutated tissue-nonspecific alkaline phosphatase proteins associated with neonatal hypophosphatasia using green fluorescent protein chimeras. J Clin Endocrinol Metab 1998; 83: 3936–3942.

    CAS  PubMed  Google Scholar 

  26. Nasu M, Ito M, Ishida Y, Numa N, Komaru K, Nomura S et al. Aberrant interchain disulfide bridge of tissue-nonspecific alkaline phosphatase with an Arg433-->Cys substitution associated with severe hypophosphatasia. FEBS J 2006; 273: 5612–5624.

    Article  CAS  PubMed  Google Scholar 

  27. Michigami T, Uchihashi T, Suzuki A, Tachikawa K, Nakajima S, Ozono K . Common mutations F310L and T1559del in the tissue-nonspecific alkaline phosphatase gene are related to distinct phenotypes in Japanese patients with hypophosphatasia. Eur J Pediatr 2005; 164: 277–282.

    Article  CAS  PubMed  Google Scholar 

  28. Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH et al. Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 2000; 15: 1879–1888.

    Article  CAS  PubMed  Google Scholar 

  29. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  30. Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 2004; 303: 1198–1201.

    Article  CAS  PubMed  Google Scholar 

  31. Surosky RT, Urabe M, Godwin SG, McQuiston SA, Kurtzman GJ, Ozawa K et al. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol 1997; 71: 7951–7959.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  33. Orimo H, Shimada T . Regulation of the human tissue-nonspecific alkaline phosphatase gene expression by all-trans-retinoic acid in SaOS-2 osteosarcoma cell line. Bone 2005; 36: 866–876.

    Article  CAS  PubMed  Google Scholar 

  34. Matsushima A, Kotobuki N, Tadokoro M, Kawate K, Yajima H, Takakura Y et al. In vivo osteogenic capability of human mesenchymal cells cultured on hydroxyapatite and on beta-tricalcium phosphate. Artif Organs 2009; 33: 474–481.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Ohgushi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsube, Y., Kotobuki, N., Tadokoro, M. et al. Restoration of cellular function of mesenchymal stem cells from a hypophosphatasia patient. Gene Ther 17, 494–502 (2010). https://doi.org/10.1038/gt.2009.156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.156

Keywords

Search

Quick links