Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting human glioma cells using HSV-1 amplicon peptide display vector

Abstract

Targeting cell infection using herpes simplex virus type 1 (HSV-1) vectors is a complicated issue as the process involves multiple interactions of viral envelope glycoproteins and cellular host surface proteins. In this study, we have inserted a human glioma-specific peptide sequence (denoted as MG11) into a peptide display HSV-1 amplicon vector replacing the heparan sulfate-binding domain of glycoprotein C (gC). The modified MG11:gC envelope recombinant vectors were subsequently packaged into virions in the presence of helper virus deleted for gC. Our results showed that the tropism of these HSV-1 recombinant virions was increased for human glioma cells in culture as compared with wild-type virions. The binding of these recombinant virions could also be blocked effectively by pre-incubating the cells with the glioma-specific peptide, indicating that MG11 peptide and the recombinant virions competed for the same or similar receptor-binding sites on the cell surface of human glioma cells. Furthermore, preferential homing of these virions was shown in xenograft glioma mouse model following intravascular delivery. Taken together, these results validated the hypothesis that HSV-1 binding to cells can be redirected to human gliomas through the incorporation of MG11 peptide sequence to the virions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Spear MA . Gene therapy of gliomas: receptor and transcriptional targeting. Anticancer Res 1998; 18: 3223–3231.

    CAS  PubMed  Google Scholar 

  2. Herold BC, WuDunn D, Soltys N, Spear PG . Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol 1991; 65: 1090–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Montgomery RI, Warner MS, Lum BJ, Spear PG . Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 1996; 87: 427–436.

    Article  CAS  Google Scholar 

  4. Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R et al. A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 1998; 246: 179–189.

    Article  CAS  Google Scholar 

  5. Spear PG, Eisenberg RJ, Cohen GH . Three classes of cell surface receptors for alphaherpesvirus entry. Virology 2000; 275: 1–8.

    Article  CAS  Google Scholar 

  6. Spear PG . Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 2004; 6: 401–410.

    Article  CAS  Google Scholar 

  7. Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999; 99: 13–22.

    Article  CAS  Google Scholar 

  8. Bender FC, Samanta M, Heldwein EE, de Leon MP, Bilman E, Lou H et al. Antigenic and mutational analyses of herpes simplex virus glycoprotein B reveal four functional regions. J Virol 2007; 81: 3827–3841.

    Article  CAS  Google Scholar 

  9. Parry C, Bell S, Minson T, Browne H . Herpes simplex virus type 1 glycoprotein H binds to alphavbeta3 integrins. J Gen Virol 2005; 86: 7–10.

    Article  CAS  Google Scholar 

  10. Gianni T, Forghieri C, Campadelli-Fiume G . The herpesvirus glycoproteins B and H.L are sequentially recruited to the receptor-bound gD to effect membrane fusion at virus entry. Proc Natl Acad Sci USA 2006; 103: 14572–14577.

    Article  CAS  Google Scholar 

  11. Campadelli-Fiume G, Amasio M, Avitabile E, Cerretani A, Forghieri C, Gianni T et al. The multipartite system that mediates entry of herpes simplex virus into the cell. Rev Med Virol 2007; 17: 313–326.

    Article  CAS  Google Scholar 

  12. Satoh T, Arii J, Suenaga T, Wang J, Kogure A, Uehori J et al. PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B. Cell 2008; 132: 935–944.

    Article  CAS  Google Scholar 

  13. Fusco D, Forghieri C, Campadelli-Fiume G . The pro-fusion domain of herpes simplex virus glycoprotein D (gD) interacts with the gD N terminus and is displaced by soluble forms of viral receptors. Proc Natl Acad Sci USA 2005; 102: 9323–9328.

    Article  CAS  Google Scholar 

  14. Krummenacher C, Supekar VM, Whitbeck JC, Lazear E, Connolly SA, Eisenberg RJ et al. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. Embo J 2005; 24: 4144–4153.

    Article  CAS  Google Scholar 

  15. Sodeik B, Ebersold MW, Helenius A . Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 1997; 136: 1007–1021.

    Article  CAS  Google Scholar 

  16. Bearer EL, Breakefield XO, Schuback D, Reese TS, LaVail JH . Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc Natl Acad Sci USA 2000; 97: 8146–8150.

    Article  CAS  Google Scholar 

  17. Roizman B, Batterson W . Herpes Viruses and their Replication. Raven Press: New York, 1991, pp 497–526.

    Google Scholar 

  18. Wang X, Kong L, Zhang GR, Sun M, Geller AI . Targeted gene transfer to nigrostriatal neurons in the rat brain by helper virus-free HSV-1 vector particles that contain either a chimeric HSV-1 glycoprotein C-GDNF or a gC-BDNF protein. Brain Res Mol Brain Res 2005; 139: 88–102.

    Article  CAS  Google Scholar 

  19. Cao H, Zhang GR, Wang X, Kong L, Geller AI . Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles. BMC Neurosci 2008; 9: 37.

    Article  Google Scholar 

  20. Tal-Singer R, Peng C, Ponce De Leon M, Abrams WR, Banfield BW, Tufaro F et al. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol 1995; 69: 4471–4483.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Laquerre S, Anderson DB, Stolz DB, Glorioso JC . Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J Virol 1998; 72: 9683–9697.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Spear MA, Schuback D, Miyata K, Grandi P, Sun F, Yoo L et al. HSV-1 amplicon peptide display vector. J Virol Methods 2003; 107: 71–79.

    Article  CAS  Google Scholar 

  23. Grandi P, Spear M, Breakefield XO, Wang S . Targeting HSV amplicon vectors. Methods 2004; 33: 179–186.

    Article  CAS  Google Scholar 

  24. Spear MA, Breakefield XO, Beltzer J, Schuback D, Weissleder R, Pardo FS et al. Isolation, characterization, and recovery of small peptide phage display epitopes selected against viable malignant glioma cells. Cancer Gene Ther 2001; 8: 506–511.

    Article  CAS  Google Scholar 

  25. Ho IA, Lam PY, Hui KM . Identification and characterization of novel human glioma-specific peptides to potentiate tumor-specific gene delivery. Hum Gene Ther 2004; 15: 719–732.

    Article  CAS  Google Scholar 

  26. Fiore R, Puschel AW . The function of semaphorins during nervous system development. Front Biosci 2003; 8: s484–s499.

    Article  CAS  Google Scholar 

  27. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 2003; 424: 391–397.

    Article  CAS  Google Scholar 

  28. Kumanogoh A, Kikutani H . Roles of the semaphorin family in immune regulation. Adv Immunol 2003; 81: 173–198.

    Article  CAS  Google Scholar 

  29. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 1999; 99: 71–80.

    Article  CAS  Google Scholar 

  30. Nagai H, Sugito N, Matsubara H, Tatematsu Y, Hida T, Sekido Y et al. CLCP1 interacts with semaphorin 4B and regulates motility of lung cancer cells. Oncogene 2007; 26: 4025–4031.

    Article  CAS  Google Scholar 

  31. Rainov NG, Ikeda K, Qureshi N, Grover S, Barnett FH, Herrlinger U et al. Intra-arterial virus and nonvirus vector-mediated gene transfer to experimental rat brain tumors. Front Radiat Ther Oncol 1999; 33: 227–240.

    Article  CAS  Google Scholar 

  32. Ohgaki H, Kleihues P . Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170: 1445–1453.

    Article  CAS  Google Scholar 

  33. Menotti L, Cerretani A, Campadelli-Fiume G . A herpes simplex virus recombinant that exhibits a single-chain antibody to HER2/neu enters cells through the mammary tumor receptor, independently of the gD receptors. J Virol 2006; 80: 5531–5539.

    Article  CAS  Google Scholar 

  34. Menotti L, Cerretani A, Hengel H, Campadelli-Fiume G . Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol 2008; 82: 10153–10161.

    Article  CAS  Google Scholar 

  35. Conner J, Braidwood L, Brown SM . A strategy for systemic delivery of the oncolytic herpes virus HSV1716: redirected tropism by antibody-binding sites incorporated on the virion surface as a glycoprotein D fusion protein. Gene Therapy 2008; 15: 1579–1592.

    Article  CAS  Google Scholar 

  36. Zhou G, Ye GJ, Debinski W, Roizman B . Engineered herpes simplex virus 1 is dependent on IL13Ralpha 2 receptor for cell entry and independent of glycoprotein D receptor interaction. Proc Natl Acad Sci USA 2002; 99: 15124–15129.

    Article  CAS  Google Scholar 

  37. Kamiyama H, Zhou G, Roizman B . Herpes simplex virus 1 recombinant virions exhibiting the amino terminal fragment of urokinase-type plasminogen activator can enter cells via the cognate receptor. Gene Therapy 2006; 13: 621–629.

    Article  CAS  Google Scholar 

  38. Debinski W, Gibo DM, Slagle B, Powers SK, Gillespie GY . Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int J Oncol 1999; 15: 481–486.

    CAS  PubMed  Google Scholar 

  39. Zhou G, Roizman B . Construction and properties of a herpes simplex virus 1 designed to enter cells solely via the IL-13alpha2 receptor. Proc Natl Acad Sci USA 2006; 103: 5508–5513.

    Article  CAS  Google Scholar 

  40. Heldwein EE, Krummenacher C . Entry of herpesviruses into mammalian cells. Cell Mol Life Sci 2008; 65: 1653–1668.

    Article  CAS  Google Scholar 

  41. Harris SL, Frank I, Yee A, Cohen GH, Eisenberg RJ, Friedman HM . Glycoprotein C of herpes simplex virus type 1 prevents complement-mediated cell lysis and virus neutralization. J Infect Dis 1990; 162: 331–337.

    Article  CAS  Google Scholar 

  42. Friedman HM, Glorioso JC, Cohen GH, Hastings JC, Harris SL, Eisenberg RJ . Binding of complement component C3b to glycoprotein gC of herpes simplex virus type 1: mapping of gC-binding sites and demonstration of conserved C3b binding in low-passage clinical isolates. J Virol 1986; 60: 470–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lubinski JM, Jiang M, Hook L, Chang Y, Sarver C, Mastellos D et al. Herpes simplex virus type 1 evades the effects of antibody and complement in vivo. J Virol 2002; 76: 9232–9241.

    Article  CAS  Google Scholar 

  44. Bender FC, Whitbeck JC, Lou H, Cohen GH, Eisenberg RJ . Herpes simplex virus glycoprotein B binds to cell surfaces independently of heparan sulfate and blocks virus entry. J Virol 2005; 79: 11588–11597.

    Article  CAS  Google Scholar 

  45. Smith KD, Shao MY, Posner MC, Weichselbaum RR . Tumor genotype determines susceptibility to oncolytic herpes simplex virus mutants: strategies for clinical application. Future Oncol 2007; 3: 545–556.

    Article  CAS  Google Scholar 

  46. Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJ . A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 1996; 56: 5079–5086.

    CAS  PubMed  Google Scholar 

  47. Ichikawa T, Hogemann D, Saeki Y, Tyminski E, Terada K, Weissleder R et al. MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 2002; 4: 523–530.

    Article  CAS  Google Scholar 

  48. Spear MA . Efficient DNA subcloning through selective restriction endonuclease digestion. Biotechniques 2000; 28: 660–662, 664, 666 passim.

    Article  CAS  Google Scholar 

  49. Ho IA, Hui KM, Lam PY . Glioma-specific and cell cycle-regulated herpes simplex virus type 1 amplicon viral vector. Hum Gene Ther 2004; 15: 495–508.

    Article  CAS  Google Scholar 

  50. Eisenberg RJ, Ponce de Leon M, Friedman HM, Fries LF, Frank MM, Hastings JC et al. Complement component C3b binds directly to purified glycoprotein C of herpes simplex virus types 1 and 2. Microb Pathog 1987; 3: 423–435.

    Article  CAS  Google Scholar 

  51. Fidler IJ, Schackert G, Zhang RD, Radinsky R, Fujimaki T . The biology of melanoma brain metastasis. Cancer Metastasis Rev 1999; 18: 387–400.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Breakefield XO (Departments of Neurology and Radiology, Harvard Medical School) for her valuable advices and assistance in proofreading. Special thanks to Brandt CR (UW-Madison School of Medicine and Public Health) for providing us with the gC-deleted helper viruses, Spear MA (University of California, San Diego) for providing pCONGA4 amplicon vectors and Khor HY for her assistance with the propagation of viruses. This work was supported by grants from the Agency for Science, Technology and Research (A*STAR) and SingHealth Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Y P Lam.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, I., Miao, L., Sia, K. et al. Targeting human glioma cells using HSV-1 amplicon peptide display vector. Gene Ther 17, 250–260 (2010). https://doi.org/10.1038/gt.2009.128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.128

Keywords

Search

Quick links