Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino

Abstract

We have earlier shown that antisense morpholino oligomers are able to restore dystrophin expression by systemic delivery in body-wide skeletal muscles of dystrophic mdx mice. However, the levels of dystrophin expression vary considerably and, more importantly, no dystrophin expression has been achieved in cardiac muscle. In this study, we investigate the efficiency of morpholino-induced exon skipping in cardiomyoblasts and myocytes in vitro, and in cardiac muscle in vivo by dose escalation. We showed that morpholino induces targeted exon skipping equally effectively in both skeletal muscle myoblasts and cardiomyoblasts. Effective exon skipping was achieved in cardiomyocytes in culture. In the mdx mice, morpholino rescues dystrophin expression dose dependently in both skeletal and cardiac muscles. Therapeutic levels of dystrophin were achieved in cardiac muscle albeit at higher doses than in skeletal muscles. Up to 50 and 30% normal levels of dystrophin were induced by single systemic delivery of 3 g kg–1 of morpholino in skeletal and cardiac muscles, respectively. High doses of morpholino treatment reduced the serum levels of creatine kinase without clear toxicity. These findings suggest that effective rescue of dystrophin in cardiac muscles can be achieved by morpholino for the treatment of Duchenne muscular dystrophy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM . Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987; 50: 509–517.

    Article  CAS  Google Scholar 

  2. Arahata K, Beggs AH, Honda H, Ito S, Ishiura S, Tsukahara T et al. Preservation of the C-terminus of dystrophin molecule in the skeletal muscle from Becker muscular dystrophy. J Neurol Sci 1991; 101: 148–156.

    Article  CAS  Google Scholar 

  3. Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 1989; 45: 498–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwartz M, Hertz JM, Sveen ML, Vissing J . LGMD2I presenting with a characteristic Duchenne or Becker muscular dystrophy phenotype. Neurology 2005; 64: 1635–1637.

    Article  CAS  Google Scholar 

  5. Angelini C, Fanin M, Pegoraro E, Freda MP, Cadaldini M, Martinello F . Clinical-molecular correlation in 104 mild X-linked muscular dystrophy patients: characterization of sub-clinical phenotypes. Neuromuscul Disord 1994; 4: 349–358.

    Article  CAS  Google Scholar 

  6. England SB, Nicholson LV, Johnson MA, Forrest SM, Love DR, Zubrzycka-Gaarn EE et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 1990; 343: 180–182.

    Article  CAS  Google Scholar 

  7. Wang B, Li J, Xiao X . Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. PNAS 2000; 95: 13714–13719.

    Article  Google Scholar 

  8. Lu QL, Mann CJ, Lou F, Bou-Gharios G, Morris GE, Xue SA et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 2003; 9: 1009–1014.

    Article  CAS  Google Scholar 

  9. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J et al. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 2005; 102: 198–203.

    Article  CAS  Google Scholar 

  10. Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 2006; 12: 175–177.

    Article  CAS  Google Scholar 

  11. Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A, Takeda S et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 2009; 65: 667–676.

    Article  Google Scholar 

  12. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357: 2677–2686.

    Article  CAS  Google Scholar 

  13. Arechavala-Gomeza V, Graham IR, Popplewell LJ, Adams AM, Aartsma-Rus A, Kinali M et al. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther 2007; 18: 798–810. http://clinicaltrials.gov/ct2/show/NCT00844597?term=duchenne%2C+AVI&rank=1.

    Article  CAS  Google Scholar 

  14. Foster K, Foster H, Dickson JG . Gene therapy progress and prospects: Duchenne muscular dystrophy. Gene Therapy 2006; 13: 1677–1685.

    Article  CAS  Google Scholar 

  15. Wagner KR, Lechtzin N, Judge DP . Current treatment of adult Duchenne muscular dystrophy. Biochim Biophys Acta 2007; 1772: 229–237.

    Article  CAS  Google Scholar 

  16. Townsend D, Yasuda S, Li S, Chamberlain JS, Metzger JM . Emergent dilated cardiomyopathy caused by targeted repair of dystrophic skeletal muscle. Mol Ther 2008; 16: 832–835.

    Article  CAS  Google Scholar 

  17. Matsuda R, Nishikawa A, Tanaka H . Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. J Biochem (Tokyo) 1995; 118: 959–964.

    Article  CAS  Google Scholar 

  18. Silver MM, Banerjee D, Hudson AJ . Segmental myofiber necrosis in myotonic dystrophy—an immunoperoxidase study of immunoglobulins in skeletal muscle. Am J Pathol 1983; 112: 294–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bostick B, Yue Y, Long C, Duan D . Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression. Circ Res 2008; 102: 121–130.

    Article  CAS  Google Scholar 

  20. Quinlan JG, Hahn HS, Wong BL, Lorenz JN, Wenisch AS, Levin LS . Evolution of the mdx mouse cardiomyopathy: physiological and morphological findings. Neuromuscul Disord 2004; 14: 491–496.

    Article  Google Scholar 

  21. Wu B, Moulton HM, Iversen PL, Jiang J, Li J, Spurney CF . et al. Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci USA 2008; 105: 14814–14819.

    Article  CAS  Google Scholar 

  22. Wu B, Li Y, Morcos PA, Doran TJ, Lu P, Lu QL . Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther 2009; 17: 864–871.

    Article  CAS  Google Scholar 

  23. Kurreck J . Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003; 270: 1628–1644.

    Article  CAS  Google Scholar 

  24. Summerton J, Weller D . Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 1997; 7: 187–195.

    Article  CAS  Google Scholar 

  25. Zhou YY, Wang SQ, Zhu WZ, Chruscinski A, Kobilka BK, Ziman B et al. Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol 2000; 279: H429–H436.

    Article  CAS  Google Scholar 

  26. Kajstura J, Zhang X, Liu Y, Szoke E, Cheng W, Olivetti G et al. The cellular basis of pacing-induced dilated cardiomyopathy. Myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation 1995; 92: 2306–2317.

    Article  CAS  Google Scholar 

  27. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114: 763–776.

    Article  CAS  Google Scholar 

  28. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003; 100: 12313–12318.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Carolinas Muscular Dystrophy Research Endowment at the Carolinas HealthCare Foundation and Carolinas Medical Center, Charlotte, NC, and by U.S. Army Medical Research, Department of Defense (W81XWH-05-1-0616).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q L Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Lu, P., Benrashid, E. et al. Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino. Gene Ther 17, 132–140 (2010). https://doi.org/10.1038/gt.2009.120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.120

Keywords

This article is cited by

Search

Quick links