Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors

Abstract

Gene transfer after intra-amniotic injection has, in general, been of low efficiency and limited to epithelial cells in the skin, pulmonary and gastrointestinal system. We have recently shown that early gestational administration results in a more efficient gene transfer to developmentally accessible stem cell populations in the skin and eye. In this study we present a comprehensive analysis of patterns of tissue expression seen after early intra-amniotic gene transfer (IAGT) using lentiviral vectors. To assess the influence of developmental stage on tissue expression, injections were administered from the late head fold/early somite stage (E8) to E18. In early gestation (E8–10), green fluorescent protein (GFP) expression was observed in multiple organs, derived from all three germ layers. Remarkably, GFP expression was observed in tissues derived from mesoderm and neural ectoderm at E8, whereas expression was limited to only epithelial cells of ectoderm- and endoderm-derived organs after E11. The amount and duration of gene expression was much higher after IAGT at early gestational time points. The observed temporal patterns of gene expression correspond to the predicted developmental accessibility of organ-specific cell populations. This model may be useful for the analyses of mechanisms of genetic and/or developmental disease and for the development of prenatal gene therapy for specific disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Iwamoto HS, Trapnell BC, McConnell CJ, Daugherty C, Whitsett JA . Pulmonary inflammation associated with repeated, prenatal exposure to an E1, E3-deleted adenoviral vector in sheep. Gene Therapy 1999; 6: 98–106.

    Article  CAS  PubMed  Google Scholar 

  2. Sylvester KG, Yang EY, Cass DL, Crombleholme TM, Adzick NS . Fetoscopic gene therapy for congenital lung disease. J Pediatr Surg 1997; 32: 964–969.

    Article  CAS  PubMed  Google Scholar 

  3. Vincent MC, Trapnell BC, Baughman RP, Wert SE, Whitsett JA, Iwamoto HS . Adenovirus-mediated gene transfer to the respiratory tract of fetal sheep in utero. Hum Gene Ther 1995; 6: 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  4. Schachtner S, Buck C, Bergelson J, Baldwin H . Temporally regulated expression patterns following in utero adenovirus-mediated gene transfer. Gene Therapy 1999; 6: 1249–1257.

    Article  CAS  PubMed  Google Scholar 

  5. Waddington SN, Buckley SM, Bernloehr C, Bossow S, Ungerechts G, Cook T et al. Reduced toxicity of F-deficient Sendai virus vector in the mouse fetus. Gene Therapy 2004; 11: 599–608.

    Article  CAS  PubMed  Google Scholar 

  6. Karolewski BA, Wolfe JH . Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther 2006; 14: 14–24.

    Article  CAS  PubMed  Google Scholar 

  7. Shen JS, Meng XL, Maeda H, Ohashi T, Eto Y . Widespread gene transduction to the central nervous system by adenovirus in utero: implication for prenatal gene therapy to brain involvement of lysosomal storage disease. J Gene Med 2004; 6: 1206–1215.

    Article  CAS  PubMed  Google Scholar 

  8. Christensen G, Minamisawa S, Gruber PJ, Wang Y, Chien KR . High-efficiency, long-term cardiac expression of foreign genes in living mouse embryos and neonates. Circulation 2000; 101: 178–184.

    Article  CAS  PubMed  Google Scholar 

  9. Bouchard S, MacKenzie TC, Radu AP, Hayashi S, Peranteau WH, Chirmule N et al. Long-term transgene expression in cardiac and skeletal muscle following fetal administration of adenoviral or adeno-associated viral vectors in mice. J Gene Med 2003; 5: 941–950.

    Article  CAS  PubMed  Google Scholar 

  10. Lipshutz GS, Flebbe-Rehwaldt L, Gaensler KM . Adenovirus-mediated gene transfer to the peritoneum and hepatic parenchyma of fetal mice in utero. Surgery 1999; 126: 171–177.

    Article  CAS  PubMed  Google Scholar 

  11. Lipshutz GS, Gruber CA, Cao Y, Hardy J, Contag CH, Gaensler KM . In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther 2001; 3: 284–292.

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell M, Jerebtsova M, Batshaw ML, Newman K, Ye X . Long-term gene transfer to mouse fetuses with recombinant adenovirus and adeno-associated virus (AAV) vectors. Gene Therapy 2000; 7: 1986–1992.

    Article  CAS  PubMed  Google Scholar 

  13. Turkay A, Saunders T, Kurachi K . Intrauterine gene transfer: gestational stage-specific gene delivery in mice. Gene Therapy 1999; 6: 1685–1694.

    Article  CAS  PubMed  Google Scholar 

  14. Gregory LG, Waddington SN, Holder MV, Mitrophanous KA, Buckley SM, Mosley KL et al. Highly efficient EIAV-mediated in utero gene transfer and expression in the major muscle groups affected by Duchenne muscular dystrophy. Gene Therapy 2004; 11: 1117–1125.

    Article  CAS  PubMed  Google Scholar 

  15. Mackenzie TC, Kobinger GP, Kootstra NA, Radu A, Sena-Esteves M, Bouchard S et al. Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol Ther 2002; 6: 349–358.

    Article  CAS  PubMed  Google Scholar 

  16. MacKenzie TC, Kobinger GP, Louboutin JP, Radu A, Javazon EH, Sena-Esteves M et al. Transduction of satellite cells after prenatal intramuscular administration of lentiviral vectors. J Gene Med 2005; 7: 50–58.

    Article  CAS  PubMed  Google Scholar 

  17. Weisz B, David AL, Gregory LG, Perocheau D, Ruthe A, Waddington SN et al. Targeting the respiratory muscles of fetal sheep for prenatal gene therapy for Duchenne muscular dystrophy. Am J Obstet Gynecol 2005; 193: 1105–1109.

    Article  CAS  PubMed  Google Scholar 

  18. Yang EY, Kim HB, Shaaban AF, Milner R, Adzick NS, Flake AW . Persistent postnatal transgene expression in both muscle and liver after fetal injection of recombinant adenovirus. J Pediatr Surg 1999; 34: 766–772; discussion 772–763.

    Article  CAS  PubMed  Google Scholar 

  19. Holzinger A, Trapnell BC, Weaver TE, Whitsett JA, Iwamoto HS . Intraamniotic administration of an adenoviral vector for gene transfer to fetal sheep and mouse tissues. Pediatr Res 1995; 38: 844–850.

    Article  CAS  PubMed  Google Scholar 

  20. Larson JE, Morrow SL, Delcarpio JB, Bohm RP, Ratterree MS, Blanchard JL et al. Gene transfer into the fetal primate: evidence for the secretion of transgene product. Mol Ther 2000; 2: 631–639.

    Article  CAS  PubMed  Google Scholar 

  21. Larson JE, Morrow SL, Happel L, Sharp JF, Cohen JC . Reversal of cystic fibrosis phenotype in mice by gene therapy in utero. Lancet 1997; 349: 619–620.

    Article  CAS  PubMed  Google Scholar 

  22. McCray Jr PB, Armstrong K, Zabner J, Miller DW, Koretzky GA, Couture L et al. Adenoviral-mediated gene transfer to fetal pulmonary epithelia in vitro and in vivo. J Clin Invest 1995; 95: 2620–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buckley SM, Waddington SN, Jezzard S, Lawrence L, Schneider H, Holder MV et al. Factors influencing adenovirus-mediated airway transduction in fetal mice. Mol Ther 2005; 12: 484–492.

    Article  CAS  PubMed  Google Scholar 

  24. Schneider H, Adebakin S, Themis M, Cook T, Douar AM, Pavirani A et al. Therapeutic plasma concentrations of human factor IX in mice after gene delivery into the amniotic cavity: a model for the prenatal treatment of haemophilia B. J Gene Med 1999; 1: 424–432.

    Article  CAS  PubMed  Google Scholar 

  25. Douar AM, Adebakin S, Themis M, Pavirani A, Cook T, Coutelle C et al. Foetal gene delivery in mice by intra-amniotic administration of retroviral producer cells and adenovirus. Gene Therapy 1997; 4: 883–890.

    Article  CAS  PubMed  Google Scholar 

  26. Boyle MP, Enke RA, Adams RJ, Guggino WB, Zeitlin PL . In utero AAV-mediated gene transfer to rabbit pulmonary epithelium. Mol Ther 2001; 4: 115–121.

    Article  CAS  PubMed  Google Scholar 

  27. Ferrari S, Pellegrini G, Mavilio F, De Luca M . Gene therapy approaches for epidermolysis bullosa. Clin Dermatol 2005; 23: 430–436.

    Article  PubMed  Google Scholar 

  28. Endo M, Zoltick PW, Peranteau WH, Radu A, Muvarak N, Ito M et al. Efficient in vivo targeting of epidermal stem cells by early gestational intraamniotic injection of lentiviral vector driven by the keratin 5 promoter. Mol Ther 2008; 16: 131–137.

    Article  CAS  PubMed  Google Scholar 

  29. Endo M, Zoltick PW, Chung DC, Bennett J, Radu A, Muvarak N et al. Gene transfer to ocular stem cells by early gestational intraamniotic injection of lentiviral vector. Mol Ther 2007; 15: 579–587.

    Article  CAS  PubMed  Google Scholar 

  30. Findlater GS, McDougall RD, Kaufman MH . Eyelid development, fusion and subsequent reopening in the mouse. J Anat 1993; 183 (Pt 1): 121–129.

    PubMed  PubMed Central  Google Scholar 

  31. Kaufman MH, Bard J . The Anatomical Basis of Mouse Development. Academic Press: San Diego, 1999.

    Google Scholar 

  32. Baker CV, Bronner-Fraser M . Vertebrate cranial placodes I. Embryonic induction. Dev Biol 2001; 232: 1–61.

    Article  CAS  PubMed  Google Scholar 

  33. Blackburn CC, Manley NR . Developing a new paradigm for thymus organogenesis. Nat Rev Immunol 2004; 4: 278–289.

    Article  CAS  PubMed  Google Scholar 

  34. Graw J . The genetic and molecular basis of congenital eye defects. Nat Rev Genet 2003; 4: 876–888.

    Article  CAS  PubMed  Google Scholar 

  35. Pispa J, Thesleff I . Mechanisms of ectodermal organogenesis. Dev Biol 2003; 262: 195–205.

    Article  CAS  PubMed  Google Scholar 

  36. Hardman MJ, Sisi P, Banbury DN, Byrne C . Patterned acquisition of skin barrier function during development. Development 1998; 125: 1541–1552.

    CAS  PubMed  Google Scholar 

  37. M'Boneko V, Merker HJ . Development and morphology of the periderm of mouse embryos (days 9-12 of gestation). Acta Anat (Basel) 1988; 133: 325–336.

    Article  CAS  Google Scholar 

  38. Byrne C, Hardman M, Nield K . Covering the limb--formation of the integument. J Anat 2003; 202: 113–123.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaufman MH . The Atlas of Mouse Development. Academic Press: London, San Diego, 1992.

    Google Scholar 

  40. Burns AJ . Migration of neural crest-derived enteric nervous system precursor cells to and within the gastrointestinal tract. Int J Dev Biol 2005; 49: 143–150.

    Article  PubMed  Google Scholar 

  41. Solnica-Krezel L . Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 2005; 15: R213–R228.

    Article  CAS  PubMed  Google Scholar 

  42. Sato M, Tanigawa M, Kikuchi N . Nonviral gene transfer to surface skin of mid-gestational murine embryos by intraamniotic injection and subsequent electroporation. Mol Reprod Dev 2004; 69: 268–277.

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi K, Lemke RP, Greer JJ . Ultrasound measurements of fetal breathing movements in the rat. J Appl Physiol 2001; 91: 316–320.

    Article  PubMed  Google Scholar 

  44. U.S. National Institutes of Health. Recombinant DNA Advisory Committee. Prenatal gene transfer: scientific, medical, and ethical issues: a report of the Recombinant DNA Advisory Committee. Hum Gene Ther 2000; 11: 1211–1229.

    Article  Google Scholar 

  45. Miyoshi H, Blömer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Naldini L, Blömer U, Gage FH, Trono D, Verma IM . Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zennou V, Serguera C, Sarkis C, Colin P, Perret E, Mallet J et al. The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat Biotechnol 2001; 19: 446–450.

    Article  CAS  PubMed  Google Scholar 

  48. Donello JE, Loeb JE, Hope TJ . Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 1998; 72: 5085–5092.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Robbins PB, Yu XJ, Skelton DM, Pepper KA, Wasserman RM, Zhu L et al. Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells. J Virol 1997; 71: 9466–9474.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kozak M . Initiation of translation in prokaryotes and eukaryotes. Gene 1999; 234: 187–208.

    Article  CAS  PubMed  Google Scholar 

  51. Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW . Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 2004; 122: 131–139.

    Article  CAS  PubMed  Google Scholar 

  52. O'Rourke JP, Hiraragi H, Urban K, Patel M, Olsen JC, Bunnell BA . Analysis of gene transfer and expression in skeletal muscle using enhanced EIAV lentivirus vectors. Mol Ther 2003; 7: 632–639.

    Article  CAS  PubMed  Google Scholar 

  53. Olsen JC . Gene transfer vectors derived from equine infectious anemia virus. Gene Therapy 1998; 5: 1481–1487.

    Article  CAS  PubMed  Google Scholar 

  54. Martarano L, Stephens R, Rice N, Derse D . Equine infectious anemia virus trans-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing. J Virol 1994; 68: 3102–3111.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stetor SR, Rausch JW, Guo MJ, Burnham JP, Boone LR, Waring MJ et al. Characterization of (+) strand initiation and termination sequences located at the center of the equine infectious anemia virus genome. Biochemistry 1999; 38: 3656–3667.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michael A Gratton (Department of Otolaryngology, University of Pennsylvania) for his assistance with cochlear analysis and Nidal Muvarak (Center for Fetal Research, Children's Hospital of Philadelphia) for his assistance with vector production. This study was supported in part by the Ruth and Tristram C Colket Jr Chair in Pediatric Surgery (AWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A W Flake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, M., Henriques-Coelho, T., Zoltick, P. et al. The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors. Gene Ther 17, 61–71 (2010). https://doi.org/10.1038/gt.2009.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.115

Keywords

This article is cited by

Search

Quick links