Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fatty acid–spermine conjugates as DNA carriers for nonviral in vivo gene delivery

Abstract

The lack of efficient in vivo gene delivery is a well-known shortcoming of nonviral delivery vectors, in particular of chemical vectors. We developed a series of novel nonviral carriers for plasmid-based in vivo gene delivery. This new transport device is based on the assembly of DNA plasmids with synthetic derivatives of naturally occurring molecules—fatty acid–spermine conjugates (or lipospermines). We tested the ability of these fatty acid conjugates to interact with plasmid DNA (pDNA) and found that they formed DNA nanocomplexes, which are protected from DNase I degradation. This protection was shown to directly correlate with the length of the aliphatic component. However, this increase in the length of the hydrocarbon chain resulted in increased toxicity. The cationic lipids used for transfection typically have a C16 and C18 hydrocarbon chain. Interestingly, toxicity studies, together with further characterization studies, suggested that the two most suitable candidates for in vivo delivery are those with the shortest hydrocarbon chain, butanoyl- and decanoylspermine. Morphological characterization of DNA nanocomplexes resulting from these lipospermines showed the formation of a homogenous population, with the diameter ranging approximately from 40 to 200 nm. Butanoylspermine was found to be the most promising carrier from this series, resulting in a significantly increased gene expression, in relation to naked plasmid, in both tissues herein targeted (dermis and M. tibialis anterior). Thus, we established a correlation between the in vitro properties of the ensuing DNA nanocarriers and their efficient in vivo gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gehl J . Electroporation for drug and gene delivery in the clinic: doctors go electric. Methods Mol Biol 2008; 423: 351–359.

    Article  CAS  PubMed  Google Scholar 

  2. Lu X, Sankin G, Pua EC, Madden J, Zhong P . Activation of transgene expression in skeletal muscle by focused ultrasound. Biochem Biophys Res Commun 2009; 379: 428–433.

    Article  CAS  PubMed  Google Scholar 

  3. Mir LM, Moller PH, Andre F, Gehl J . Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 2005; 54: 83–114.

    Article  CAS  PubMed  Google Scholar 

  4. van Drunen Littel-van den Hurk S, Luxembourg A, Ellefsen B, Wilson D, Ubach A, Hannaman D et al. Electroporation-based DNA transfer enhances gene expression and immune responses to DNA vaccines in cattle. Vaccine 2008; 26: 5503–5509.

    Article  CAS  PubMed  Google Scholar 

  5. Ziady AG, Gedeon CR, Muhammad O, Stillwell V, Oette SM, Fink TL et al. Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung. Mol Ther 2003; 8: 948–956.

    Article  CAS  PubMed  Google Scholar 

  6. Freimark BD, Blezinger HP, Florack VJ, Nordstrom JL, Long SD, Deshpande DS et al. Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J Immunol 1998; 160: 4580–4586.

    CAS  PubMed  Google Scholar 

  7. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T . In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003; 24: 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  8. Zintchenko A, Philipp A, Dehshahri A, Wagner E . Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem 2008; 19: 1448–1455; epub ahead of print 14 June 2008.

    Article  CAS  PubMed  Google Scholar 

  9. Ziady AG, Gedeon CR, Miller T, Quan W, Payne JM, Hyatt SL et al. Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo. Mol Ther 2003; 8: 936–947.

    Article  CAS  PubMed  Google Scholar 

  10. Luten J, van Nostrum CF, De Smedt SC, Hennink WE . Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release 2008; 126: 97–110.

    Article  CAS  PubMed  Google Scholar 

  11. Mann A, Richa R, Ganguli M . DNA condensation by poly-L-lysine at the single molecule level: role of DNA concentration and polymer length. J Control Release 2008; 125: 252–262.

    Article  CAS  PubMed  Google Scholar 

  12. Mann A, Thakur G, Shukla V, Ganguli M . Peptides in DNA delivery: current insights and future directions. Drug Discov Today 2008; 13: 152–160.

    Article  CAS  PubMed  Google Scholar 

  13. Bloomfield VA . DNA condensation by multivalent cations. Biopolymers 1997; 44: 269–282.

    Article  CAS  PubMed  Google Scholar 

  14. Martin ME, Rice KG . Peptide-guided gene delivery. AAPS J 2007; 9: E18–E29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies OR, Head L, Armitage D, Pearson EA, Davies MC, Marlow M et al. Surface modification of microspheres with steric stabilizing and cationic polymers for gene delivery. Langmuir 2008; 24: 7138–7146.

    Article  CAS  PubMed  Google Scholar 

  16. Childs AC, Mehta DJ, Gerner EW . Polyamine-dependent gene expression. Cell Mol Life Sci 2003; 60: 1394–1406.

    Article  CAS  PubMed  Google Scholar 

  17. D′Agostino L, di Pietro M, Di Luccia A . Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. FEBS J 2005; 272: 3777–3787.

    Article  PubMed  Google Scholar 

  18. Patel MM, Anchordoquy TJ . Contribution of hydrophobicity to thermodynamics of ligand-DNA binding and DNA collapse. Biophys J 2005; 88: 2089–2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geall AJ, Blagbrough IS . Homologation of polyamines in the rapid synthesis of lipospermine conjugates and related lipoplexes. Tetrahedron 2000; 56: 2449–2460.

    Article  CAS  Google Scholar 

  20. Geall A, Blagbrough IS . Homologation of polyamines in the synthesis of lipo-spermine conjugates and related lipoplexes. Tetrahedron Lett 1998; 39: 443–446.

    Article  CAS  Google Scholar 

  21. Ahmed OA, Pourzand C, Blagbrough IS . Varying the unsaturation in N4,N9-dioctadecanoyl spermines: nonviral lipopolyamine vectors for more efficient plasmid DNA formulation. Pharm Res 2006; 23: 31–40.

    Article  CAS  PubMed  Google Scholar 

  22. Abbasi M, Uludag H, Incani V, Hsu CY, Jeffery A . Further investigation of lipid-substituted poly(L-lysine) polymers for transfection of human skin fibroblasts. Biomacromolecules 2008; 9: 1618–1630.

    Article  CAS  PubMed  Google Scholar 

  23. Arscott PG, Ma C, Wenner JR, Bloomfield VA . DNA condensation by cobalt hexaammine (III) in alcohol-water mixtures: dielectric constant and other solvent effects. Biopolymers 1995; 36: 345–364.

    Article  CAS  PubMed  Google Scholar 

  24. Cherny DI, Jovin TM . Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J Mol Biol 2001; 313: 295–307.

    Article  CAS  PubMed  Google Scholar 

  25. Hud NV, Allen MJ, Downing KH, Lee J, Balhorn R . Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochem Biophys Res Commun 1993; 193: 1347–1354.

    Article  CAS  PubMed  Google Scholar 

  26. Talelli M, Pispas S . Complexes of cationic block copolymer micelles with DNA: histone/DNA complex mimetics. Macromol Biosci 2008; 8: 960–967.

    Article  CAS  PubMed  Google Scholar 

  27. Allen MJ, Bradbury EM, Balhorn R . AFM analysis of DNA-protamine complexes bound to mica. Nucleic Acids Res 1997; 25: 2221–2226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blagbrough IS, Geall AJ, Neal AP . Polyamines and novel polyamine conjugates interact with DNA in ways that can be exploited in non-viral gene therapy. Biochem Soc Trans 2003; 31: 397–406.

    Article  CAS  PubMed  Google Scholar 

  29. Gaucheron J, Santaella C, Vierling P . Highly fluorinated lipospermines for gene transfer: synthesis and evaluation of their in vitro transfection efficiency. Bioconjug Chem 2001; 12: 114–128.

    Article  CAS  PubMed  Google Scholar 

  30. Hosseinkhani H, Tabata Y . Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells. J Nanosci Nanotechnol 2006; 6: 2320–2328.

    Article  CAS  PubMed  Google Scholar 

  31. Kichler A, Zauner W, Ogris M, Wagner E . Influence of the DNA complexation medium on the transfection efficiency of lipospermine/DNA particles. Gene Therapy 1998; 5: 855–860.

    Article  CAS  PubMed  Google Scholar 

  32. Geall AJ, Al-Hadithi D, Blagbrough IS . Efficient calf thymus DNA condensation upon binding with novel bile acid polyamine amides. Bioconjug Chem 2002; 13: 481–490.

    Article  CAS  PubMed  Google Scholar 

  33. Batrakova EV, Kabanov AV . Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008; 130: 98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bello-Roufai M, Lambert O, Pitard B . Relationships between the physicochemical properties of an amphiphilic triblock copolymers/DNA complexes and their intramuscular transfection efficiency. Nucleic Acids Res 2007; 35: 728–739.

    Article  CAS  PubMed  Google Scholar 

  35. Dunlap DD, Maggi A, Soria MR, Monaco L . Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res 1997; 25: 3095–3101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Avgoustakis K . Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv 2004; 1: 321–333.

    Article  CAS  PubMed  Google Scholar 

  37. van Vlerken LE, Vyas TK, Amiji MM . Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 2007; 24: 1405–1414.

    Article  CAS  PubMed  Google Scholar 

  38. Chang CW, Choi D, Kim WJ, Yockman JW, Christensen LV, Kim YH et al. Non-ionic amphiphilic biodegradable PEG-PLGA-PEG copolymer enhances gene delivery efficiency in rat skeletal muscle. J Control Release 2007; 118: 245–253.

    Article  CAS  PubMed  Google Scholar 

  39. Gautam A, Densmore CL, Golunski E, Xu B, Waldrep JC . Transgene expression in mouse airway epithelium by aerosol gene therapy with PEI-DNA complexes. Mol Ther 2001; 3: 551–556.

    Article  CAS  PubMed  Google Scholar 

  40. Wolff JA, Budker V . The mechanism of naked DNA uptake and expression. Adv Genet 2005; 54: 3–20.

    CAS  PubMed  Google Scholar 

  41. Brooks AR, Wu F, Liu P, Qian HS, Wang P, Gibson H et al. 1078 Silencing of transgene expression following plasmid based delivery to murine skeletal muscle is dose dependent. Mol Ther 2006; 13: S413.

    Article  Google Scholar 

  42. Pomel C, Leborgne C, Cheradame H, Scherman D, Kichler A, Guegan P . Synthesis and evaluation of amphiphilic poly(tetrahydrofuran-b-ethylene oxide) copolymers for DNA delivery into skeletal muscle. Pharm Res 2008; 25: 2963–2971.

    Article  CAS  PubMed  Google Scholar 

  43. Gaymalov ZZ, Yang Z, Pisarev VM, Alakhov VY, Kabanov AV . The effect of the nonionic block copolymer pluronic P85 on gene expression in mouse muscle and antigen-presenting cells. Biomaterials 2009; 30: 1232–1245.

    Article  CAS  PubMed  Google Scholar 

  44. Lavigne MD, Yates L, Coxhead P, Gorecki DC . Nuclear-targeted chimeric vector enhancing nonviral gene transfer into skeletal muscle of Fabry mice in vivo. FASEB J 2008; 22: 2097–2107.

    Article  CAS  PubMed  Google Scholar 

  45. Lundin KE, Ge R, Svahn MG, Tornquist E, Leijon M, Branden LJ et al. Cooperative strand invasion of supercoiled plasmid DNA by mixed linear PNA and PNA-peptide chimeras. Biomol Eng 2004; 21: 51–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alex Perálvarez-Marín for his invaluable help in dynamic light scatter measurements. We also thank the Organic Chemistry Department and Professor Astrid Gräslund from the Department of Biochemistry and Byophysics at Stockholm University for providing access to the zetasizer equipment. This project was financially supported by the Swedish Research Council, The Swedish Foundation for Strategic Research Bio-Xgrant, KI Faculty funds for funding of postgraduate students, Marie Curie fellowship programme—Eurogendis training site, Portuguese Foundation for Science and Technology (SFRH-BD-16757-2004), the European Union FP6 grant EuroPharmacoGene (FP6-2005-037283) and Synthe Gene Delivery (LSHB-CT-2005-018716).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J R Viola, R Strömberg or C I E Smith.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viola, J., Leijonmarck, H., Simonson, O. et al. Fatty acid–spermine conjugates as DNA carriers for nonviral in vivo gene delivery. Gene Ther 16, 1429–1440 (2009). https://doi.org/10.1038/gt.2009.108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.108

Keywords

This article is cited by

Search

Quick links