Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A versatile nonviral vector system for tetracycline-dependent one-step conditional induction of transgene expression

Abstract

In this study, we describe a novel self-contained, nonviral vector system for the rapid development of tetracycline (Tet)-inducible transgene expression systems in mammalian cell lines. To avoid multiple rounds of clonal selection for the establishment of stably transfected cell clones, as is necessary with conventional systems, we constructed a multicomplementary DNA(cDNA) expression vector that enables both one-step targeted genomic integration and conditional induction of transgene expression. This vector system consists of several modules including a Tet-inducible promoter directing the expression of a transgene and two Tet repressor expression units placed in tandem on a single vector. The cell clones, generated using a one-step φC31 integrase-mediated chromosomal integration of the multi-cDNA expression construct, showed a stable and robust expression with high induction rates upon addition of doxycycline inducer in five different cell lines tested. By using this system, we show c-Src-induced cell transformation and anticancer cell therapy for this transformation in cultured fibroblast cells. The results show a rapid production and accumulation of target protein on addition of the inducer starting from extremely low background levels and reduction to background levels in a matter of days after the inducer was withdrawn from the culture medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rossi FM, Blau HM . Recent advances in inducible gene expression systems. Curr Opin Biotechnol 1998; 9: 451–456.

    Article  CAS  Google Scholar 

  2. Bornkamm GW, Berens C, Kuklik-Roos C, Bechet JM, Laux G, Bachl J et al. Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res 2005; 33: e137.

    Article  PubMed Central  Google Scholar 

  3. Epanchintsev A, Jung P, Menssen A, Hermeking H . Inducible microRNA expression by an all-in-one episomal vector system. Nucleic Acids Res 2006; 34: e119.

    Article  PubMed Central  Google Scholar 

  4. Bach M, Grigat S, Pawlik B, Fork C, Utermohlen O, Pal S et al. Fast set-up of doxycycline-inducible protein expression in human cell lines with a single plasmid based on Epstein-Barr virus replication and the simple tetracycline repressor. FEBS J 2007; 274: 783–790.

    Article  CAS  PubMed Central  Google Scholar 

  5. Sorrell DA, Kolb AF . Targeted modification of mammalian genomes. Biotechnol Adv 2005; 23: 431–469.

    Article  CAS  PubMed Central  Google Scholar 

  6. Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP . Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 2001; 21: 3926–3934.

    Article  CAS  PubMed Central  Google Scholar 

  7. Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP et al. Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat Biotechnol 2002; 20: 1124–1128.

    Article  CAS  PubMed Central  Google Scholar 

  8. Nishiumi F, Sone T, Kishine H, Thyagarajan B, Kogure T, Miyawaki A et al. Simultaneous single cell stable expression of 2–4 cDNAs in HeLaS3 integrase system. Cell Struct Func 2009; 34: 47–59.

    Article  CAS  Google Scholar 

  9. Cheo DL, Titus SA, Byrd DR, Hartley JL, Temple GF, Brasch MA et al. Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones. Genome Res 2004; 14: 2111–2120.

    Article  CAS  PubMed Central  Google Scholar 

  10. Sasaki Y, Sone T, Yoshida S, Yahata K, Hotta J, Chesnut JD et al. Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J Biotechnol 2004; 107: 233–243.

    Article  CAS  Google Scholar 

  11. Yahata K, Kishine H, Sone T, Sasaki Y, Hotta J, Chesnut JD et al. Multi-gene gateway clone design for expression of multiple heterologous genes in living cells: conditional gene expression at near physiological levels. J Biotechnol 2005; 118: 123–134.

    Article  CAS  Google Scholar 

  12. Sone T, Yahata K, Sasaki Y, Hotta J, Kishine H, Chesnut JD et al. Multi-gene gateway clone design for expression of multiple heterologous genes in living cells: Modular construction of multiple cDNA expression elements using recombinant cloning. J Biotechnol 2008; 136: 113–121.

    Article  CAS  Google Scholar 

  13. Sauer B, Henderson N . Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 1988; 85: 5166–5170.

    Article  CAS  Google Scholar 

  14. O’Gorman S, Fox DT, Wahl GM . Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 1991; 251: 1351–1355.

    Article  Google Scholar 

  15. Kuhstoss S, Rao RN . Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol 1991; 222: 897–908.

    Article  CAS  Google Scholar 

  16. Combes P, Till R, Bee S, Smith MC . The streptomyces genome contains multiple pseudo-attB sites for the (phi)C31-encoded site-specific recombination system. J Bacteriol 2002; 184: 5746–5752.

    Article  CAS  PubMed Central  Google Scholar 

  17. Groth AC, Olivares EC, Thyagarajan B, Calos MP . A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 2000; 97: 5995–6000.

    Article  CAS  Google Scholar 

  18. Kadesch T, Berg P . Effects of the position of the simian virus 40 enhancer on expression of multiple transcription units in a single plasmid. Mol Cell Biol 1986; 6: 2593–2601.

    Article  CAS  PubMed Central  Google Scholar 

  19. Proudfoot NJ . Transcriptional interference and termination between duplicated alpha-globin gene constructs suggests a novel mechanism for gene regulation. Nature 1986; 322: 562–565.

    Article  CAS  Google Scholar 

  20. Chung JH, Bell AC, Felsenfeld G . Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci USA 1997; 94: 575–580.

    Article  CAS  PubMed Central  Google Scholar 

  21. Yahata K, Maeshima K, Sone T, Ando T, Okabe M, Imamoto N et al. cHS4 insulator-mediated alleviation of promoter interference during cell-based expression of tandemly associated transgenes. J Mol Biol 2007; 374: 580–590.

    Article  CAS  PubMed Central  Google Scholar 

  22. West AG, Gaszner M, Felsenfeld G . Insulators: many functions, many mechanisms. Genes Dev 2002; 16: 271–288.

    Article  PubMed Central  Google Scholar 

  23. Burgess-Beusse B, Farrell C, Gaszner M, Litt M, Mutskov V, Recillas-Targa F et al. The insulation of genes from external enhancers and silencing chromatin. Proc Natl Acad Sci USA 2002; 99 (Suppl 4): 16433–16437.

    Article  CAS  PubMed Central  Google Scholar 

  24. Yao F, Svensjo T, Winkler T, Lu M, Eriksson C, Eriksson E et al. Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum Gene Ther 1998; 9: 1939–1950.

    Article  CAS  PubMed Central  Google Scholar 

  25. Hillen W, Gatz C, Altschmied L, Schollmeier K, Meier I . Control of expression of the Tn10-encoded tetracycline resistance genes. Equilibrium and kinetic investigation of the regulatory reactions. J Mol Biol 1983; 169: 707–721.

    Article  CAS  PubMed Central  Google Scholar 

  26. Chalberg TW, Genise HL, Vollrath D, Calos MP . phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci 2005; 46: 2140–2146.

    Article  PubMed Central  Google Scholar 

  27. Oneyama C, Hikita T, Nada S, Okada M . Functional dissection of transformation by c-Src and v-Src. Genes Cells 2008; 13: 1–12.

    Article  CAS  PubMed Central  Google Scholar 

  28. Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 2000; 404: 999–1003.

    Article  CAS  PubMed Central  Google Scholar 

  29. Oneyama C, Hikita T, Enya K, Dobenecker MW, Saito K, Nada S et al. The lipid raft-anchored adaptor protein Cbp controls the oncogenic potential of c-Src. Mol Cell 2008; 30: 426–436.

    Article  CAS  PubMed Central  Google Scholar 

  30. Chalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, Hillman RT et al. Integration specificity of phage fC31 integrase in the human genome. J Mol Biol 2006; 357: 28–48.

    Article  CAS  Google Scholar 

  31. Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA . Molecular analysis of chromosomal rearrangements in mammalian cells after φC31-mediated integration. Hum Gene Ther 2006; 17: 1077–1094.

    Article  CAS  Google Scholar 

  32. Thyagarajan B, Liu Y, Shin S, Lakshmipathy U, Scheyhing K, Xue H et al. Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells 2008; 26: 119–126.

    Article  CAS  Google Scholar 

  33. Donoho GP, Jasin M, Berg P . Analysis of gene targeting and intrachromosomal homologous rcombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 1998; 18: 4070–4078.

    Article  CAS  PubMed Central  Google Scholar 

  34. Phillips JE, Calos MP . Effects of homology length and donor vector arrangement on the efficiency of double-strand break-mediated recombination in human cells. Somat Cell Mol Genet 1999; 25: 91–100.

    Article  CAS  Google Scholar 

  35. Kohyama J, Tokunaga A, Fujita Y, Miyoshi H, Nagai T, Miyawaki A et al. Visualization of spatiotemporal activation of Notch signaling: live monitoring and significance in neural development. Dev Biol 2005; 286: 311–325.

    Article  CAS  Google Scholar 

  36. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 193–199.

    Article  CAS  PubMed Central  Google Scholar 

  37. Sasaki Y, Sone T, Yahata K, Kishine H, Hotta J, Chesnut JD et al. Multi-gene gateway clone design for expression of multiple heterologous genes in living cells: eukaryotic clones containing two and three ORF multi-gene cassettes expressed from a single promoter. J Biotechnol 2008; 136: 103–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Michele P Calos for pCMV-phiC31 Int and pTA-attB, Dr Atsushi Miyawaki, Riken (Japan) for providing pd1-Venus and Dr Gary Felsenfeld for pJC5-4. This work was supported in part by the Grant-in-Aid for Scientific Research from The New Energy and Industrial Technology Development Organization, Japan (NEDO). Gateway, Max Efficiency and Library Efficiency are registered trademarks of Invitrogen Corp. Clonase, pDONR, DH10B, DB3.1, pENTR and pDEST, ChargeSwitch Total RNA cell kit, and Superscript First-strand Synthesis System are trademarks of Invitrogen Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Imamoto.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, K., Sone, T., Oneyama, C. et al. A versatile nonviral vector system for tetracycline-dependent one-step conditional induction of transgene expression. Gene Ther 16, 1383–1394 (2009). https://doi.org/10.1038/gt.2009.105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.105

Keywords

This article is cited by

Search

Quick links