Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Optimization of a gene electrotransfer method for mesenchymal stem cell transfection

Abstract

Gene electrotransfer is an efficient and reproducible nonviral gene transfer technique useful for the nonpermanent expression of therapeutic transgenes. The present study established optimal conditions for the electrotransfer of reporter genes into mesenchymal stem cells (MSCs) isolated from rat bone marrow by their selective adherence to tissue-culture plasticware. The electrotransfer of the lacZ reporter gene was optimized by adjusting the pulse electric field intensity, electric pulse type, electropulsation buffer conductivity and electroporation temperature. LacZ electrotransfection into MSCs was optimal at 1500 V cm−1 with pre-incubation in Spinner's minimum essential medium buffer at 22 °C. Under these conditions β-galactosidase expression was achieved in 29±3% of adherent cells 48 h post transfection. The kinetics of β-galactosidase activity revealed maintenance of β-galactosidase production for at least 10 days. Moreover, electroporation did not affect the MSC potential for multidifferentiation; electroporated MSCs differentiated into osteoblastic, adipogenic and chondrogenic lineages to the same extent as cells that were not exposed to electric pulses. Thus, this study demonstrates the feasibility of efficient transgene electrotransfer into MSCs while preserving cell viability and multipotency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pereira RF, Halford KW, O'Hara MD, Leeper DB, Sokolov BP, Pollard MD et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 1995; 92: 4857–4861.

    Article  CAS  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  Google Scholar 

  3. Bittner RE, Schofer C, Weipoltshammer K, Ivanova S, Streubel B, Hauser E et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl) 1999; 199: 391–396.

    Article  CAS  Google Scholar 

  4. Murphy JM, Fink DJ, Hunziker EB, Barry FP . Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003; 48: 3464–3474.

    Article  Google Scholar 

  5. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M et al. Tissue-engineered bone regeneration. Nat Biotechnol 2000; 18: 959–963.

    Article  CAS  Google Scholar 

  6. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001; 98: 10344–10349.

    Article  CAS  Google Scholar 

  7. Tang YL, Zhao Q, Zhang YC, Cheng L, Liu M, Shi J et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept 2004; 117: 3–10.

    Article  CAS  Google Scholar 

  8. Schoeberlein A, Holzgreve W, Dudler L, Hahn S, Surbek DV . Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses. Am J Obstet Gynecol 2005; 192: 1044–1052.

    Article  CAS  Google Scholar 

  9. Ryan JM, Barry F, Murphy JM, Mahon BP . Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 2007; 149: 353–363.

    Article  CAS  Google Scholar 

  10. Jorgensen C, Djouad F, Apparailly F, Noel D . Engineering mesenchymal stem cells for immunotherapy. Gene Therapy 2003; 10: 928–931.

    Article  CAS  Google Scholar 

  11. Meinel L, Hofmann S, Betz O, Fajardo R, Merkle HP, Langer R et al. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials 2006; 27: 4993–5002.

    Article  CAS  Google Scholar 

  12. Vassalli G, Bueler H, Dudler J, von Segesser LK, Kappenberger L . Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol 2003; 90: 229–238.

    Article  Google Scholar 

  13. Kolodka TM, Garlick JA, Taichman LB . Evidence for keratinocyte stem cells in vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes. Proc Natl Acad Sci USA 1998; 95: 4356–4361.

    Article  CAS  Google Scholar 

  14. McMahon JM, Conroy S, Lyons M, Greiser U, O'Shea C, Strappe P et al. Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev 2006; 15: 87–96.

    Article  CAS  Google Scholar 

  15. Chan J, O'Donoghue K, de la Fuente J, Roberts IA, Kumar S, Morgan JE et al. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 2005; 23: 93–102.

    Article  CAS  Google Scholar 

  16. Ito H, Goater JJ, Tiyapatanaputi P, Rubery PT, O'Keefe RJ, Schwarz EM . Light-activated gene transduction of recombinant adeno-associated virus in human mesenchymal stem cells. Gene Therapy 2004; 11: 34–41.

    Article  CAS  Google Scholar 

  17. Olmsted-Davis EA, Gugala Z, Gannon FH, Yotnda P, McAlhany RE, Lindsey RW et al. Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Hum Gene Ther 2002; 13: 1337–1347.

    Article  CAS  Google Scholar 

  18. Li JZ, Hankins GR, Kao C, Li H, Kammauff J, Helm GA . Osteogenesis in rats induced by a novel recombinant helper-dependent bone morphogenetic protein-9 (BMP-9) adenovirus. J Gene Med 2003; 5: 748–756.

    Article  CAS  Google Scholar 

  19. Frolova-Jones EA, Ensser A, Stevenson AJ, Kinsey SE, Meredith DM . Stable marker gene transfer into human bone marrow stromal cells and their progenitors using novel herpesvirus saimiri-based vectors. J Hematother Stem Cell Res 2000; 9: 573–581.

    Article  CAS  Google Scholar 

  20. Hoelters J, Ciccarella M, Drechsel M, Geissler C, Gulkan H, Bocker W et al. Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J Gene Med 2005; 7: 718–728.

    Article  CAS  Google Scholar 

  21. Vanderbyl S, MacDonald GN, Sidhu S, Gung L, Telenius A, Perez C et al. Transfer and stable transgene expression of a mammalian artificial chromosome into bone marrow-derived human mesenchymal stem cells. Stem Cells 2004; 22: 324–333.

    Article  CAS  Google Scholar 

  22. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH . Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1: 841–845.

    Article  CAS  Google Scholar 

  23. Potter H, Weir L, Leder P . Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 1984; 81: 7161–7165.

    Article  CAS  Google Scholar 

  24. Bruggemann U, Roux EC, Hannig J, Nicolau C . Low-oxygen-affinity red cells produced in a large-volume, continuous-flow electroporation system. Transfusion 1995; 35: 478–486.

    Article  CAS  Google Scholar 

  25. Li LH, Shivakumar R, Feller S, Allen C, Weiss JM, Dzekunov S et al. Highly efficient, large volume flow electroporation. Technol Cancer Res Treat 2002; 1: 341–350.

    Article  CAS  Google Scholar 

  26. Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 1999; 96: 4262–4267.

    Article  CAS  Google Scholar 

  27. Mir LM . Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 2001; 53: 1–10.

    Article  CAS  Google Scholar 

  28. Teissie J, Golzio M, Rols MP . Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 2005; 1724: 270–280.

    Article  CAS  Google Scholar 

  29. Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D et al. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 2002; 5: 133–140.

    Article  CAS  Google Scholar 

  30. Satkauskas S, Andre F, Bureau MF, Scherman D, Miklavcic D, Mir LM . Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum Gene Ther 2005; 16: 1194–1201.

    Article  CAS  Google Scholar 

  31. Cegovnik U, Novakovic S . Setting optimal parameters for in vitro electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses. Bioelectrochemistry 2004; 62: 73–82.

    Article  CAS  Google Scholar 

  32. Pucihar G, Mir LM, Miklavcic D . The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 2002; 57: 167–172.

    Article  CAS  Google Scholar 

  33. Puc M, Flisar K, Rebersek S, Miklavcic D . Electroporator for in vitro cell permeabilization. Radiol Oncol 2001; 35: 203–207.

    Google Scholar 

  34. Peister A, Mellad JA, Wang M, Tucker HA, Prockop DJ . Stable transfection of MSCs by electroporation. Gene Therapy 2004; 11: 224–228.

    Article  CAS  Google Scholar 

  35. Bureau MF, Gehl J, Deleuze V, Mir LM, Scherman D . Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 2000; 1474: 353–359.

    Article  CAS  Google Scholar 

  36. Pucihar G, Kotnik T, Kanduser M, Miklavcic D . The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 2001; 54: 107–115.

    Article  CAS  Google Scholar 

  37. Rols MP, Delteil C, Serin G, Teissie J . Temperature effects on electrotransfection of mammalian cells. Nucleic Acids Res 1994; 22: 540.

    Article  CAS  Google Scholar 

  38. Golzio M, Rols MP, Teissie J . In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods 2004; 33: 126–135.

    Article  CAS  Google Scholar 

  39. Teissie J, Eynard N, Gabriel B, Rols MP . Electropermeabilization of cell membranes. Adv Drug Deliv Rev 1999; 35: 3–19.

    Article  CAS  Google Scholar 

  40. Kotnik T, Mir LM, Flisar K, Puc M, Miklavcic D . Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part I. Increased efficiency of permeabilization. Bioelectrochemistry 2001; 54: 83–90.

    Article  CAS  Google Scholar 

  41. Puc M, Kotnik T, Mir LM, Miklavcic D . Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry 2003; 60: 1–10.

    Article  CAS  Google Scholar 

  42. Mohr JC, de Pablo JJ, Palecek SP . Electroporation of human embryonic stem cells: Small and macromolecule loading and DNA transfection. Biotechnol Prog 2006; 22: 825–834.

    Article  CAS  Google Scholar 

  43. Matthews KE, Dev SB, Toneguzzo F, Keating A . Electroporation for gene therapy. Methods Mol Biol 1995; 48: 273–280.

    CAS  PubMed  Google Scholar 

  44. Hilgendorf C, Spahn-Langguth H, Rhedin M, Regardh CG, Lowenadler B, Langguth P . Selective downregulation of the MDR1 gene product in Caco-2 cells by stable transfection to prove its relevance in secretory drug transport. Mol Pharm 2005; 2: 64–73.

    Article  CAS  Google Scholar 

  45. Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D et al. Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 2007; 4: 747–753.

    Article  CAS  Google Scholar 

  46. Chen ZY, He CY, Ehrhardt A, Kay MA . Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 2003; 8: 495–500.

    Article  CAS  Google Scholar 

  47. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES et al. New non-viral method for gene transfer into primary cells. Methods 2004; 33: 151–163.

    Article  CAS  Google Scholar 

  48. Potapova I, Plotnikov A, Lu Z, Danilo Jr P, Valiunas V, Qu J et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 2004; 94: 952–959.

    Article  CAS  Google Scholar 

  49. Plotnikov AN, Shlapakova I, Szabolcs MJ, Danilo Jr P, Lorell BH, Potapova IA et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 2007; 116: 706–713.

    Article  Google Scholar 

  50. Chen TH, Chen WM, Hsu KH, Kuo CD, Hung SC . Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2007; 355: 913–918.

    Article  CAS  Google Scholar 

  51. Aluigi M, Fogli M, Curti A, Isidori A, Gruppioni E, Chiodoni C et al. Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 24: 454–461.

    Article  Google Scholar 

  52. Aslan H, Zilberman Y, Arbeli V, Sheyn D, Matan Y, Liebergall M et al. Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng 2006; 12: 877–889.

    Article  CAS  Google Scholar 

  53. Baksh D, Yao R, Tuan RS . Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25: 1384–1392.

    Article  CAS  Google Scholar 

  54. Friedenstein AJ, Chailakhjan RK, Lalykina KS . The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3: 393–403.

    CAS  Google Scholar 

  55. Kotnik T, Pucihar G, Rebersek M, Miklavcic D, Mir LM . Role of pulse shape in cell membrane electropermeabilization. Biochim Biophys Acta 2003; 1614: 193–200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ceraver Company (Gonesse, France) and the Fondation de l' Avenir (Grant ET7-479) for the financial support. We also thank K Oudina for performing statistical analyses and express special thanks to R Bizios for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Petite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, E., Potier, E., Logeart-Avramoglou, D. et al. Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Ther 15, 537–544 (2008). https://doi.org/10.1038/gt.2008.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.9

Keywords

This article is cited by

Search

Quick links