Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

Using gene transfer to circumvent off-target effects

Abstract

Many recombinant growth factors have failed in clinical trials due to off-target effects. We describe a method for circumventing off-target effects that involves equipping cells with a conditionally active signaling protein that can be specifically activated by an exogenously administered synthetic ligand. We believe that this approach will have many applications in gene and cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Broudy VC . Stem cell factor and hematopoiesis. Blood 1997; 90: 1345–1364.

    CAS  PubMed  Google Scholar 

  2. Eswarakumar VP, Lax I, Schlessinger J . Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16: 139–149.

    Article  CAS  Google Scholar 

  3. Cuevas P, Carceller F, Ortega S, Zazo M, Nieto I, Gimenez-Gallego G . Hypotensive activity of fibroblast growth factor. Science 1991; 254: 1208–1210.

    Article  CAS  Google Scholar 

  4. Mazue G, Bertolero F, Jacob C, Sarmientos P, Roncucci R . Preclinical and clinical studies with recombinant human basic fibroblast growth factor. Ann NY Acad Sci 1991; 638: 329–340.

    Article  CAS  Google Scholar 

  5. Nabel EG, Yang ZY, Plautz G, Forough R, Zhan X, Haudenschild CC et al. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature 1993; 362: 844–846.

    Article  CAS  Google Scholar 

  6. Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR . Controlling signal transduction with synthetic ligands. Science 1993; 262: 1019–1024.

    Article  CAS  Google Scholar 

  7. Neff T, Blau CA . Pharmacologically regulated cell therapy. Blood 2001; 97: 2535–2540.

    Article  CAS  Google Scholar 

  8. Clackson T, Yang W, Rozamus LW, Hatada M, Amara JF, Rollins CT et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 1998; 95: 10437–10442.

    Article  CAS  Google Scholar 

  9. Iuliucci JD, Oliver SD, Morley S, Ward C, Ward J, Dalgarno D et al. Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J Clin Pharmacol 2001; 41: 870–879.

    Article  CAS  Google Scholar 

  10. Blau CA, Peterson KR, Drachman JG, Spencer DM . A proliferation switch for genetically modified cells. Proc Natl Acad Sci USA 1997; 94: 3076–3081.

    Article  CAS  Google Scholar 

  11. Jin L, Siritanaratkul N, Emery DW, Richard RE, Kaushansky K, Papayannopoulou T et al. Targeted expansion of genetically modified bone marrow cells. Proc Natl Acad Sci USA 1998; 95: 8093–8097.

    Article  CAS  Google Scholar 

  12. Jin L, Asano H, Blau CA . Stimulating cell proliferation through the pharmacologic activation of c-kit. Blood 1998; 91: 890–897.

    CAS  PubMed  Google Scholar 

  13. Zeng H, Masuko M, Jin L, Neff T, Otto KG, Blau CA . Receptor specificity in the self-renewal and differentiation of primary multipotential hemopoietic cells. Blood 2001; 98: 328–334.

    Article  CAS  Google Scholar 

  14. Zhao S, Zoller K, Masuko M, Rojnuckarin P, Yang X, Parganas E et al. JAK2, complemented by a second signal from c-kit or flt-3, triggers extensive self-renewal of primary multipotential hemopoietic cells. EMBO J 2002; 21: 2159–2167.

    Article  CAS  Google Scholar 

  15. Jin L, Zeng H, Chien S, Otto KG, Richard RE, Emery DW et al. In vivo selection using a cell growth switch. Nat Genet 2000; 26: 64–66.

    Article  CAS  Google Scholar 

  16. Neff T, Horn PA, Valli VE, Gown AM, Wardwell S, Wood BL et al. Pharmacologically regulated in vivo selection in a large animal. Blood 2002; 100: 2026–2031.

    Article  CAS  Google Scholar 

  17. Zhao S, Weinreich M, Blau CA . In vivo selection using a JAK2-based cell growth switch. Mol Ther 2004; 10: 456–458.

    Article  CAS  Google Scholar 

  18. Richard RE, Weinreich M, Chang KH, Ieremia J, Stevenson MM, Blau CA . Modulating erythrocyte chimerism in a mouse model of pyruvate kinase deficiency. Blood 2004; 103: 4432–4439.

    Article  CAS  Google Scholar 

  19. Emery DW, Tubb J, Nishino Y, Nishino T, Otto KG, Stamatoyannopoulos G et al. Selection with a regulated cell growth switch increases the likelihood of expression for a linked γ-globin gene in vitro and in vivo. Blood Cells Mol Dis 2005; 34: 235–247.

    Article  CAS  Google Scholar 

  20. Nagasawa Y, Wood BL, Wang L, Lintmaer I, Guo W, Papayannopoulou T et al. Anatomical compartments modify the response of human hematopoietic cells to a mitogenic signal. Stem Cells 2006; 24: 908–917.

    Article  Google Scholar 

  21. Riddell SR, Elliott M, Lewinsohn DA, Gilbert MJ, Wilson L, Manley SA et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med 1996; 2: 216–223.

    Article  CAS  Google Scholar 

  22. Berger C, Blau CA, Huang ML, Iuliucci JD, Dalgarno DC, Gaschet J et al. Pharmacologically regulated Fas-mediated death of adoptively transferred T cells in a nonhuman primate model. Blood 2004; 103: 1261–1269.

    Article  CAS  Google Scholar 

  23. Whitney ML, Otto K, Blau CA, Reinecke H, Murry CE . Control of myoblast proliferation with a synthetic ligand. J Biol Chem 2001; 276: 41191–41196.

    Article  CAS  Google Scholar 

  24. Li ZY, Otto KG, Richard RE, Ni S, Kirillova I, Fausto N et al. Dimerizer-induced proliferation of genetically modified hepatocytes. Mol Ther 2002; 5: 420–426.

    Article  CAS  Google Scholar 

  25. Kobinger GP, Deng S, Louboutin JP, Vatamaniuk M, Rivera VM, Lian MM et al. Pharmacologically regulated regeneration of functional human pancreatic islets. Mol Ther 2005; 11: 105–111.

    Article  CAS  Google Scholar 

  26. Richard RE, Wood B, Zeng H, Jin L, Papayannopoulou T, Blau CA . Expansion of genetically modified primary human hemopoietic cells using chemical inducers of dimerization. Blood 2000; 95: 430–436.

    CAS  PubMed  Google Scholar 

  27. Richard RE, Blau CA . Small-molecule-directed mpl signaling can complement growth factors to selectively expand genetically modified cord blood cells. Stem Cells 2003; 21: 71–78.

    Article  CAS  Google Scholar 

  28. Weinreich MA, Lintmaer I, Wang L, Liggitt HD, Harkey MA, Blau CA . Growth factor receptors as regulators of hematopoiesis. Blood 2006; 108: 3713–3721.

    Article  CAS  Google Scholar 

  29. Spivak JL . The anaemia of cancer: death by a thousand cuts. Nat Rev Cancer 2005; 5: 543–555.

    Article  CAS  Google Scholar 

  30. Caro JJ, Salas M, Ward A, Goss G . Anemia as an independent prognostic factor for survival in patients with cancer: a systemic, quantitative review. Cancer 2001; 91: 2214–2221.

    Article  CAS  Google Scholar 

  31. Henke M, Laszig R, Rübe C, Schäfer U, Haase KD, Schilcher B et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet 2003; 362: 1255–1260.

    Article  CAS  Google Scholar 

  32. Leyland-Jones B, Semiglazov V, Pawlicki M, Pienkowski T, Tjulandin S, Manikhas G et al. Maintaining normal hemoglobin levels with epoetin alfa in mainly nonanemic patients with metastatic breast cancer receiving first-line chemotherapy: a survival study. J Clin Oncol 2005; 23: 5960–5972.

    Article  CAS  Google Scholar 

  33. Wright JR, Ung YC, Julian JA, Pritchard KI, Whelan TJ, Smith C et al. Randomized, double-blind, placebo-controlled trial of erythropoietin in non-small-cell lung cancer with disease-related anemia. J Clin Oncol 2007; 25: 1027–1032.

    Article  CAS  Google Scholar 

  34. Blau CA . Erythropoietin in cancer: presumption of innocence? Stem Cells 2007; 25: 2094–2097.

    Article  CAS  Google Scholar 

  35. Arcasoy MO, Amin K, Karayal AF, Chou SC, Raleigh JA, Varia MA et al. Functional significance of erythropoietin receptor expression in breast cancer. Lab Invest 2002; 82: 911–918.

    Article  CAS  Google Scholar 

  36. Lai SY, Childs EE, Xi S, Coppelli FM, Gooding WE, Wells A et al. Erythropoietin-mediated activation of JAK-STAT signaling contributes to cellular invasion in head and neck squamous cell carcinoma. Oncogene 2005; 24: 4442–4449.

    Article  CAS  Google Scholar 

  37. Winter SC, Shah KA, Campo L, Turley H, Leek R, Corbridge RJ et al. Relation of erythropoietin and erythropoietin receptor expression to hypoxia and anemia in head and neck squamous cell carcinoma. Clin Cancer Res 2005; 11: 7614–7620.

    Article  CAS  Google Scholar 

  38. Arcasoy MO, Jiang X, Haroon ZA . Expression of erythropoietin receptor splice variants in human cancer. Biochem Biophys Res Commun 2003; 307: 999–1007.

    Article  CAS  Google Scholar 

  39. Dagnon K, Pacary E, Commo F, Antoine M, Bernaudin M, Bernaudin JF et al. Expression of erythropoietin and erythropoietin receptor in non-small cell lung carcinomas. Clin Cancer Res 2005; 11: 993–999.

    CAS  PubMed  Google Scholar 

  40. Acs G, Acs P, Beckwith SM, Pitts RL, Clements E, Wong K et al. Erythropoietin and erythropoietin receptor expression in human cancer. Cancer Res 2001; 61: 3561–3565.

    CAS  PubMed  Google Scholar 

  41. Hardee ME, Cao Y, Fu P, Jiang X, Zhao Y, Rabbani ZN et al. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression. PLoS ONE 2007; 2: e549.

    Article  Google Scholar 

  42. Yasuda Y, Musha T, Tanaka H, Fujita Y, Fujita H, Utsumi H et al. Inhibition of erythropoietin signalling destroys xenografts of ovarian and uterine cancers in nude mice. Br J Cancer 2001; 84: 836–843.

    Article  CAS  Google Scholar 

  43. Yasuda Y, Fujita Y, Matsuo T, Koinuma S, Hara S, Tazaki A et al. Erythropoietin regulates tumour growth of human malignancies. Carcinogenesis 2003; 24: 1021–1029.

    Article  CAS  Google Scholar 

  44. Anagnostou A, Liu Z, Steiner M, Chin K, Lee ES, Kessimian N et al. Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci USA 1994; 91: 3974–3978.

    Article  CAS  Google Scholar 

  45. Rinaldi A . A bloodless revolution. A growing interest in artificial blood substitutes has resulted in new products that could soon improve transfusion medicine. EMBO Rep 2005; 6: 705–708.

    Article  CAS  Google Scholar 

  46. Vekeman F, Bookhart BK, Duh MS, McKenzie SR, Lefebvre P, Piech CT . Impact of limiting erythropoiesis-stimulating agent use for chemotherapy-induced anemia on the United States blood supply. Blood 2007; 110: 852a (abstract 2896).

    Google Scholar 

  47. Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF, Brenner MK et al. An inducible caspase 9 safety switch for T-cell therapy. Blood 2005; 105: 4247–4254.

    Article  CAS  Google Scholar 

  48. Baum C, Düllmann J, Li Z, Fehse B, Meyer J, Williams DA et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    Article  CAS  Google Scholar 

  49. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G . A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci USA 2000; 97: 9150–9155.

    Article  CAS  Google Scholar 

  50. Aker M, Tubb J, Groth AC, Bukovsky AA, Bell AC, Felsenfeld G et al. Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum Gene Ther 2007; 18: 333–343.

    Article  CAS  Google Scholar 

  51. De Palma M, Montini E, Santoni de Sio FR, Benedicenti F, Gentile A, Medico E et al. Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 2005; 105: 2307–2315.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C A Blau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, C., Blau, C. Using gene transfer to circumvent off-target effects. Gene Ther 15, 759–764 (2008). https://doi.org/10.1038/gt.2008.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.43

Keywords

This article is cited by

Search

Quick links