Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNA-loaded CD40-activated B cells stimulate antigen-specific T-cell responses in dogs with spontaneous lymphoma

Abstract

Cell-based vaccination strategies to induce functional tumor-specific T cells in cancer patients have focused on using autologous dendritic cells. An alternative approach is to use RNA-loaded CD40 activated B cells (CD40-B) that are highly efficient antigen-presenting cells capable of priming naive T cells, boosting memory T-cell responses and breaking tolerance to tumor antigens. The use of tumor RNA as the antigenic payload allows for gene transfer without viruses or vectors and permits major histocompatibility complex (MHC)-independent, multiple-antigen targeting. Here, we use CD40L transfected K562 cells to generate functional CD40-B cells from the peripheral blood of humans and dogs. Testing of RNA-loaded CD40-B cells in dogs allows not only for its development in veterinary medicine but also for determination of its safety and efficacy in a large animal model of spontaneous cancer prior to initiation of human clinical trials. We found that CD40-B cells from healthy humans, healthy dogs and tumor-bearing dogs express increased levels of immune molecules such as MHC and CCR7. Moreover, RNA-loaded CD40-B cells induce functional, antigen-specific T cells from healthy dogs and dogs with lymphoma. These findings pave the way for immunotherapy trials using tumor RNA-loaded CD40-B cells to stimulate antitumor immunity in a large animal model of spontaneous neoplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Steinman RM, Dhodapkar M . Active immunization against cancer with dendritic cells: the near future. Int J Cancer 2001; 94: 459–473.

    Article  CAS  Google Scholar 

  2. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002; 99: 1517–1526.

    Article  CAS  Google Scholar 

  3. Brossart P, Wirths S, Brugger W, Kanz L . Dendritic cells in cancer vaccines. Exp Hematol 2001; 29: 1247–1255.

    Article  CAS  Google Scholar 

  4. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  CAS  Google Scholar 

  5. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    Article  CAS  Google Scholar 

  6. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H et al. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190: 1669–1678.

    Article  CAS  Google Scholar 

  7. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 2001; 61: 6451–6458.

    CAS  PubMed  Google Scholar 

  8. Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 2001; 98: 8809–8814.

    Article  CAS  Google Scholar 

  9. Steinman RM . Dendritic cells and immune-based therapies. Exp Hematol 1996; 24: 859–862.

    CAS  PubMed  Google Scholar 

  10. Jefford M, Maraskovsky E, Cebon J, Davis ID . The use of dendritic cells in cancer therapy. Lancet Oncol 2001; 2: 343–353.

    Article  CAS  Google Scholar 

  11. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002; 109: 409–417.

    Article  CAS  Google Scholar 

  12. Schultze JL, Michalak S, Seamon MJ, Dranoff G, Jung K, Daley J et al. CD40 activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 1997; 100: 2757–2765.

    Article  CAS  Google Scholar 

  13. Coughlin CM, Vance BA, Grupp SA, Vonderheide RH . RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 2004; 103: 2046–2054.

    Article  CAS  Google Scholar 

  14. Rousset F, Garcia E, Banchereau J . Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. J Exp Med 1991; 173: 705–710.

    Article  CAS  Google Scholar 

  15. Schultze JL, Seamon MJ, Michalak S, Gribben JG, Nadler LM . Autologous tumor infiltrating T cells cytotoxic for follicular lymphoma cells can be expanded in vitro. Blood 1997; 89: 3806–3816.

    CAS  PubMed  Google Scholar 

  16. Ritchie DS, Yang J, Hermans IF, Ronchese F . B-Lymphocytes activated by CD40 ligand induce an antigen-specific anti-tumour immune response by direct and indirect activation of CD8(+) T-cells. Scand J Immunol 2004; 60: 543–551.

    Article  CAS  Google Scholar 

  17. Coughlin CM, Fleming MD, Carroll RG, Pawel BR, Hogarty MD, Shan X et al. Immunosurveillance and survivin-specific T-cell immunity in children with high-risk neuroblastoma. J Clin Oncol 2006; 24: 5725–5734.

    Article  CAS  Google Scholar 

  18. Ting-De Ravin SS, Kennedy DR, Naumann N, Kennedy JS, Choi U, Hartnett BJ et al. Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy. Blood 2006; 107: 3091–3097.

    Article  Google Scholar 

  19. Bauer Jr TR, Hai M, Tuschong LM, Burkholder TH, Gu YC, Sokolic RA et al. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 2006; 108: 3313–3320.

    Article  CAS  Google Scholar 

  20. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072–1082.

    Article  CAS  Google Scholar 

  21. Ponder KP, Melniczek JR, Xu L, Weil MA, O'Malley TM, O'Donnell PA et al. Therapeutic neonatal hepatic gene therapy in mucopolysaccharidosis VII dogs. Proc Natl Acad Sci USA 2002; 99: 13102–13107.

    Article  CAS  Google Scholar 

  22. Herzog RW, Yang EY, Couto LB, Hagstrom JN, Elwell D, Fields PA et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5: 56–63.

    Article  CAS  Google Scholar 

  23. Thomas ED, Plain GL, Graham TC, Ferrebee JW . Long-term survival of lethally irradiated dogs given homografts of bone marrow. Blood 1964; 23: 488–493.

    CAS  PubMed  Google Scholar 

  24. Mannick JA, Lochte Jr HL, Ashley CA, Thomas ED, Ferrebee JW . Autografts of bone marrow in dogs after lethal total-body radiation. Blood 1960; 15: 255–266.

    CAS  PubMed  Google Scholar 

  25. Ferrebee JW, Lochte Jr HL, Jaretzki 3rd A, Sahler OD, Thomas ED . Successful marrow homograft in the dog after radiation. Surgery 1958; 43: 516–520.

    CAS  PubMed  Google Scholar 

  26. Teske E . Canine malignant lymphoma: a review and comparison with human non-Hodgkin's lymphoma. Vet Q 1994; 16: 209–219.

    Article  CAS  Google Scholar 

  27. Owen LN, Bostock DE, Halliwell RE . Cell-mediated and humoral immunity in dogs with spontaneous lymphosarcoma. Eur J Cancer 1975; 11: 187–191.

    Article  CAS  Google Scholar 

  28. MacEwen EG . Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev 1990; 9: 125–136.

    Article  CAS  Google Scholar 

  29. Bednarek MA, Sauma SY, Gammon MC, Porter G, Tamhankar S, Williamson AR et al. The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLA-A2. J Immunol 1991; 147: 4047–4053.

    CAS  PubMed  Google Scholar 

  30. Hirama K, Togashi K, Wakasa C, Yoneda M, Nishi T, Endo Y et al. Cytotoxic T-lymphocyte activity specific for hemagglutinin (H) protein of canine distemper virus in dogs. J Vet Med Sci 2003; 65: 109–112.

    Article  CAS  Google Scholar 

  31. Henry CJ, McCaw DL, Brock KV, Stoker AM, Tyler JW, Tate DJ et al. Association between cancer chemotherapy and canine distemper virus, canine parvovirus, and rabies virus antibody titers in tumor-bearing dogs. J Am Vet Med Assoc 2001; 219: 1238–1241.

    Article  CAS  Google Scholar 

  32. Sixt N, Cardoso A, Vallier A, Fayolle J, Buckland R, Wild TF . Canine distemper virus DNA vaccination induces humoral and cellular immunity and protects against a lethal intracerebral challenge. J Virol 1998; 72: 8472–8476.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999; 99: 23–33.

    Article  CAS  Google Scholar 

  34. Kellermann SA, Hudak S, Oldham ER, Liu YJ, McEvoy LM . The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 beta are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. J Immunol 1999; 162: 3859–3864.

    CAS  PubMed  Google Scholar 

  35. von Bergwelt-Baildon M, Shimabukuro-Vornhagen A, Popov A, Klein-Gonzalez N, Fiore F, Debey S et al. CD40-activated B cells express full lymph node homing triad and induce T-cell chemotaxis: potential as cellular adjuvants. Blood 2006; 107: 2786–2789.

    Article  CAS  Google Scholar 

  36. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005; 438: 803–819.

    Article  CAS  Google Scholar 

  37. Gantner F, Hermann P, Nakashima K, Matsukawa S, Sakai K, Bacon KB . CD40-dependent and -independent activation of human tonsil B cells by CpG oligodeoxynucleotides. Eur J Immunol 2003; 33: 1576–1585.

    Article  CAS  Google Scholar 

  38. Ponce F, Magnol JP, Ledieu D, Marchal T, Turinelli V, Chalvet-Monfray K et al. Prognostic significance of morphological subtypes in canine malignant lymphomas during chemotherapy. Vet J 2004; 167: 158–166.

    Article  Google Scholar 

  39. Salter RD, Howell DN, Cresswell P . Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids. Immunogenetics 1985; 21: 235–246.

    Article  CAS  Google Scholar 

  40. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM . The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 1999; 10: 673–679.

    Article  CAS  Google Scholar 

  41. Vonderheide RH, Schultze JL, Anderson KS, Maecker B, Butler MO, Xia Z et al. Equivalent induction of telomerase-specific cytotoxic T lymphocytes from tumor-bearing patients and healthy individuals. Cancer Res 2001; 61: 8366–8370.

    CAS  PubMed  Google Scholar 

  42. Zuker M . Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31: 3406–3415.

    Article  CAS  Google Scholar 

  43. Spichiger AC, Allenspach K, Ontsouka E, Gaschen F, Morel C, Blum JW et al. Abundance of mRNA of growth hormone receptor and insulin-like growth factors-1 and -2 in duodenal and colonic biopsies of dogs with chronic enteropathies. J Vet Med A Physiol Pathol Clin Med. 2005; 52: 491–497.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Amy LaBlanc, Ms Rachel Cohen, Ms Roxanne Buchanan and Ms Patty O'Donnell for their excellent technical assistance and Dr William Lee and Dr Carl June for helpful discussions and mentorship. This work was supported by grants from the Alliance for Cancer Gene Therapy (to RHV), the Barry and Savannah Poodle Memorial Fund (to NJM) and institutional funds from the University of Pennsylvania Abramson Cancer Center (to RHV) and the University of Pennsylvania School of Veterinary Medicine (to NJM and KUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H Vonderheide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, N., Coughlin, C., Overley, B. et al. RNA-loaded CD40-activated B cells stimulate antigen-specific T-cell responses in dogs with spontaneous lymphoma. Gene Ther 15, 955–965 (2008). https://doi.org/10.1038/gt.2008.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.22

Keywords

This article is cited by

Search

Quick links