Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2-/-γc-/-) mouse model

Abstract

RNA interference (RNAi) gene therapy against HIV-1 by stable expression of antiviral short hairpin RNAs (shRNAs) can potently inhibit viral replication in T cells. Recently, a mouse model with a human immune system (HIS) was developed that can be productively infected with HIV-1. In this in vivo model, in which Rag-2−/−γc−/− mice are engrafted with human CD34+CD38 hematopoietic precursor cells, we evaluated an anti-HIV RNAi gene therapy. Human hematopoietic stem cells were transduced with a lentiviral vector expressing an shRNA against the HIV-1 nef gene (shNef) or the control vector. We observed normal development of the different cell subsets of the immune system. However, although initial transduction efficiencies were similar for both vectors, a reduced percentage of transduced human immune cells was observed for the shNef vector after establishment of the HIS in vivo. Further studies are required to fully evaluate the safety implications. When we infected the mature human CD4+ T cells from the HIS mouse ex vivo with HIV-1, potent inhibition of viral replication was scored in shNef-expressing cells, confirming efficacy. When challenged with an shNef-resistant HIV-1 variant, equal replication was scored in control and shNef-expressing cells, confirming sequence-specificity of the RNAi therapy. We thus demonstrated that an antiviral RNAi-based gene therapy on blood stem cells leads to HIV-1-resistant T cells in vivo, an important proof of concept in the clinical development of RNAi against HIV-1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Deeks SG . Antiretroviral treatment of HIV infected adults. BMJ 2006; 332: 1489.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Richman DD . HIV chemotherapy. Nature 2001; 410: 995–1001.

    Article  CAS  PubMed  Google Scholar 

  3. Schackman BR, Gebo KA, Walensky RP, Losina E, Muccio T, Sax PE et al. The lifetime cost of current human immunodeficiency virus care in the United States. Med Care 2006; 44: 990–997.

    Article  PubMed  Google Scholar 

  4. Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ et al. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11: 823–842.

    Article  CAS  PubMed  Google Scholar 

  5. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  PubMed  Google Scholar 

  6. Wolkowicz R, Nolan GP . Gene therapy progress and prospects: novel gene therapy approaches for AIDS. Gene Therapy 2005; 12: 467–476.

    Article  CAS  PubMed  Google Scholar 

  7. Jacque JM, Triques K, Stevenson M . Modulation of HIV-1 replication by RNA interference. Nature 2002; 418: 435–438.

    Article  CAS  PubMed  Google Scholar 

  8. Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004; 78: 2601–2605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. ter Brake O, Konstantinova P, Ceylan M, Berkhout B . Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 2006; 14: 883–892.

    Article  CAS  PubMed  Google Scholar 

  10. Chang LJ, Liu X, He J . Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Therapy 2005; 12: 1133–1144.

    Article  CAS  PubMed  Google Scholar 

  11. Westerhout EM, Ooms M, Vink M, Das AT, Berkhout B . HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 2005; 33: 796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lackner AA, Veazey RS . Current concepts in AIDS pathogenesis: insights from the SIV/macaque model. Annu Rev Med 2007; 58: 461–476.

    Article  CAS  PubMed  Google Scholar 

  13. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J . The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427: 848–853.

    Article  CAS  PubMed  Google Scholar 

  14. Dias AS, Bester MJ, Britz RF, Apostolides Z . Animal models used for the evaluation of antiretroviral therapies. Curr HIV Res 2006; 4: 431–446.

    Article  CAS  PubMed  Google Scholar 

  15. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104–107.

    Article  CAS  PubMed  Google Scholar 

  16. Gimeno R, Weijer K, Voordouw A, Uittenbogaart CH, Legrand N, Alves NL et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2/− gammac−/− mice: functional inactivation of p53 in developing T cells. Blood 2004; 104: 3886–3893.

    Article  CAS  PubMed  Google Scholar 

  17. Legrand N, Weijer K, Spits H . Experimental models to study development and function of the human immune system in vivo. J Immunol 2006; 176: 2053–2058.

    Article  CAS  PubMed  Google Scholar 

  18. Shultz LD, Ishikawa F, Greiner DL . Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118–130.

    Article  CAS  PubMed  Google Scholar 

  19. Manz MG . Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 2007; 26: 537–541.

    Article  CAS  PubMed  Google Scholar 

  20. Legrand N, Cupedo T, van Lent AU, Ebeli MJ, Weijer K, Hanke T et al. Transient accumulation of human mature thymocytes and regulatory T cells with CD28 superagonist in ‘human immune system’ Rag2(−/−)gammac(−/−) mice. Blood 2006; 108: 238–245.

    Article  CAS  PubMed  Google Scholar 

  21. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO et al. Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2−/−gamma c−/− mice. Proc Natl Acad Sci USA 2006; 103: 15951–15956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang L, Kovalev GI, Su L . HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood 2007; 109: 2978–2981.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 2007; 109: 212–218.

    Article  CAS  PubMed  Google Scholar 

  24. Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R . HIV-1 infection and CD4 T cell depletion in the humanized Rag2−/− gamma c−/− (RAG-hu) mouse model. Retrovirology 2006; 3: 76.

    Article  PubMed  PubMed Central  Google Scholar 

  25. An DS, Poon B, Ho Tsong FR, Weijer K, Blom B, Spits H et al. Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 2007; 14: 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berges BK, Akkina SR, Folkvord JM, Connick E, Akkina R . Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2(−/−)gammac(−/−) (RAG-hu) mice. Virology 2008; 373: 342–351.

    Article  CAS  PubMed  Google Scholar 

  27. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Seppen J, Rijnberg M, Cooreman MP, Oude Elferink RP . Lentiviral vectors for efficient transduction of isolated primary quiescent hepatocytes. J Hepatol 2002; 36: 459–465.

    Article  CAS  PubMed  Google Scholar 

  29. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. ter Brake O, Berkhout B . Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med 2007; 9: 743–750.

    Article  CAS  PubMed  Google Scholar 

  31. Weijer K, Uittenbogaart CH, Voordouw A, Couwenberg F, Seppen J, Blom B et al. Intrathymic and extrathymic development of human plasmacytoid dendritic cell precursors in vivo. Blood 2002; 99: 2752–2759.

    Article  CAS  PubMed  Google Scholar 

  32. Anderson J, Li MJ, Palmer B, Remling L, Li S, Yam P et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes—CCR5 ribozyme, tat-rev siRNA, and TAR decoy—in SCID-hu mouse-derived T cells. Mol Ther 2007; 15: 1182–1188.

    Article  CAS  PubMed  Google Scholar 

  33. An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao SH et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci USA 2007; 104: 13110–13115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grimm D, Kay MA . Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 2007; 15: 878–888.

    Article  CAS  PubMed  Google Scholar 

  35. ter Brake O, t Hooft K, Liu YP, Centlivre M, von Eije KJ, Berkhout B . Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 2008; 16: 557–564.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Stephan Heynen (AMC Experimental Virology) for CA-p24 ELISA and Berend Hooibrink (AMC Cell Biology) for live cell sorting. NL, KW and Bianca Blom are supported by the Landsteiner Blood Transfusion Research Foundation, ZonMW VIDI grant, and the Bill and Melinda Gates Foundation, through the Grand Challenges in Global Health program (Human Vaccine Consortium). MC is supported by a Marie Curie Intra-European fellowship (MEIF-CT-2007-039689). OB and KE are supported by ZonMW through a Translational Gene Therapy and VICI grant, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O ter Brake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ter Brake, O., Legrand, N., von Eije, K. et al. Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2-/-γc-/-) mouse model. Gene Ther 16, 148–153 (2009). https://doi.org/10.1038/gt.2008.124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.124

Keywords

This article is cited by

Search

Quick links