Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis

Abstract

Central nervous system (CNS) delivery of anti-inflammatory cytokines, such as interleukin 4 (IL4), holds promise as treatment for multiple sclerosis (MS). We have previously shown that short-term herpes simplex virus type 1-mediated IL4 gene therapy is able to inhibit experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in mice and non-human primates. Here, we show that a single administration of an IL4-expressing helper-dependent adenoviral vector (HD-Ad) into the cerebrospinal fluid (CSF) circulation of immunocompetent mice allows persistent transduction of neuroepithelial cells and long-term (up to 5 months) CNS transgene expression without toxicity. Mice affected by chronic and relapsing EAE display clinical and neurophysiological recovery from the disease once injected with the IL4-expressing HD-Ad vector. The therapeutic effect is due to the ability of IL4 to increase, in inflamed CNS areas, chemokines (CCL1, CCL17 and CCL22) capable of recruiting regulatory T cells (CD4+CD69CD25+Foxp3+) with suppressant functions. CSF delivery of HD-Ad vectors expressing anti-inflammatory molecules might represent a valuable therapeutic option for CNS inflammatory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pardridge WM . Drug and gene delivery to the brain: the vascular route. Neuron 2002; 36: 555–558.

    Article  CAS  Google Scholar 

  2. Pardridge WM . Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2002; 1: 131–139.

    Article  CAS  Google Scholar 

  3. Consiglio A, Quattrini A, Martino S, Bensadoun JC, Dolcetta D, Trojani A et al. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med 2001; 7: 310–316.

    Article  CAS  Google Scholar 

  4. Davidson BL, Breakefield XO . Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 2003; 4: 353–364.

    Article  CAS  Google Scholar 

  5. Regardsoe EL, McMenamin MM, Charlton HM, Wood MJ . Local adenoviral expression of Fas ligand upregulates pro-inflammatory immune responses in the CNS. Gene Ther 2004; 11: 1462–1474.

    Article  CAS  Google Scholar 

  6. Tada T, Nguyen JB, Hitoshi Y, Watson NP, Dunn JF, Ohara S et al. Diffuse encephaloventriculitis and substantial leukoencephalopathy after intraventricular administration of recombinant adenovirus. Neurol Res 2005; 27: 378–386.

    Article  Google Scholar 

  7. Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR . Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci USA 2000; 97: 7482–7487.

    Article  CAS  Google Scholar 

  8. Chou AK, Yang LC, Wu PC, Wong WT, Liu GS, Chen JT et al. Intrathecal gene delivery of glial cell line-derived neurotrophic factor ameliorated paraplegia in rats after spinal ischemia. Brain Res Mol Brain Res 2005; 133: 198–207.

    Article  CAS  Google Scholar 

  9. Driesse MJ, Esandi MC, Kros JM, Avezaat CJ, Vecht C, Zurcher C et al. Intra-CSF administered recombinant adenovirus causes an immune response-mediated toxicity. Gene Ther 2000; 7: 1401–1409.

    Article  CAS  Google Scholar 

  10. Martino G, Furlan R, Comi G, Adorini L . The ependymal route to the CNS: an emerging gene-therapy approach for MS. Trends Immunol 2001; 22: 483–490.

    Article  CAS  Google Scholar 

  11. Takada J, Ooboshi H, Ago T, Kitazono T, Yao H, Kadomatsu K et al. Postischemic gene transfer of midkine, a neurotrophic factor, protects against focal brain ischemia. Gene Ther 2005; 12: 487–493.

    Article  CAS  Google Scholar 

  12. Poliani PL, Brok H, Furlan R, Ruffini F, Bergami A, Desina G et al. Delivery to the central nervous system of a nonreplicative herpes simplex type 1 vector engineered with the interleukin 4 gene protects rhesus monkeys from hyperacute autoimmune encephalomyelitis. Hum Gene Ther 2001; 12: 905–920.

    Article  CAS  Google Scholar 

  13. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005; 436: 266–271.

    Article  CAS  Google Scholar 

  14. Amadio S, Pluchino S, Brini E, Morana P, Guerriero R, Boneschi FM et al. Motor evoked potentials in a mouse model of chronic multiple sclerosis. Muscle Nerve 2006; 33: 265–273.

    Article  Google Scholar 

  15. Sakaguchi S . Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6: 345–352.

    Article  CAS  Google Scholar 

  16. Giarratana N, Penna G, Amuchastegui S, Mariani R, Daniel KC, Adorini L . A vitamin D analog down-regulates proinflammatory chemokine production by pancreatic islets inhibiting T cell recruitment and type 1 diabetes development. J Immunol 2004; 173: 2280–2287.

    Article  CAS  Google Scholar 

  17. Glabinski AR, Bielecki B, Ransohoff RM . Chemokine upregulation follows cytokine expression in chronic relapsing experimental autoimmune encephalomyelitis. Scand J Immunol 2003; 58: 81–88.

    Article  CAS  Google Scholar 

  18. Nakajima T, Inagaki N, Tanaka H, Tanaka A, Yoshikawa M, Tamari M et al. Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcepsilon receptor I cross-linking: an interspecies comparison. Blood 2002; 100: 3861–3868.

    Article  CAS  Google Scholar 

  19. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006; 442: 997–1002.

    Article  CAS  Google Scholar 

  20. Furlan R, Poliani PL, Marconi PC, Bergami A, Ruffini F, Adorini L et al. Central nervous system gene therapy with interleukin-4 inhibits progression of ongoing relapsing-remitting autoimmune encephalomyelitis in Biozzi AB/H mice. Gene Ther 2001; 8: 13–19.

    Article  CAS  Google Scholar 

  21. Pace L, Rizzo S, Palombi C, Brombacher F, Doria G . Cutting edge: IL-4-induced protection of CD4+CD25− Th cells from CD4+CD25+ regulatory T cell-mediated suppression. J Immunol 2006; 176: 3900–3904.

    Article  CAS  Google Scholar 

  22. Bluestone JA, Tang Q . Therapeutic vaccination using CD4+CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci USA 2004; 101 (Suppl 2): 14622–14626.

    Article  CAS  Google Scholar 

  23. Giarratana N, Penna G, Gregori S, Daniel KC, Adorini L . Exploiting the potential of regulatory T cells in the control of type 1 diabetes. In: Taams L, Akbar AN, Wauben MHM (eds). Regulatory T Cells in Inflammation. Birkhäuser: Basel, Switzerland, 2005, pp 95–110.

    Google Scholar 

  24. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001; 194: 847–853.

    Article  CAS  Google Scholar 

  25. Sather BD, Treuting P, Perdue N, Miazgowicz M, Fontenot JD, Rudensky AY et al. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. J Exp Med 2007; 204: 1335–1347.

    Article  CAS  Google Scholar 

  26. Columba-Cabezas S, Serafini B, Ambrosini E, Sanchez M, Penna G, Adorini L et al. Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol 2002; 130: 10–21.

    Article  CAS  Google Scholar 

  27. Furlan R, Kurne A, Bergami A, Brambilla E, Maucci R, Gasparini L et al. A nitric oxide releasing derivative of flurbiprofen inhibits experimental autoimmune encephalomyelitis. J Neuroimmunol 2004; 150: 10–19.

    Article  CAS  Google Scholar 

  28. Kohm AP, Carpentier PA, Anger HA, Miller SD . Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002; 169: 4712–4716.

    Article  CAS  Google Scholar 

  29. Chen HH, Mack LM, Kelly R, Ontell M, Kochanek S, Clemens PR . Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc Natl Acad Sci USA 1997; 94: 1645–1650.

    Article  CAS  Google Scholar 

  30. Recchia A, Parks RJ, Lamartina S, Toniatti C, Pieroni L, Palombo F et al. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc Natl Acad Sci USA 1999; 96: 2615–2620.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian Multiple Sclerosis Foundation (FISM), the Myelin Project, the Cariplo Foundation and the Italian Ministry of Education and Scientific Research (MIUR-FIRB). We acknowledge the technical help of V Lampasona, C Porcheri and L Muzio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Furlan.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butti, E., Bergami, A., Recchia, A. et al. IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther 15, 504–515 (2008). https://doi.org/10.1038/gt.2008.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.10

Keywords

This article is cited by

Search

Quick links