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Purpose: Copy-number variants (CNVs) are generally interpreted
by linking the effects of gene dosage with phenotypes. The clinical
interpretation of noncoding CNVs remains challenging. We
investigated the percentage of disease-associated CNVs in patients
with congenital limb malformations that affect noncoding cis-
regulatory sequences versus genes sensitive to gene dosage effects.

Methods: We applied high-resolution copy-number analysis to
340 unrelated individuals with isolated limb malformation. To
investigate novel candidate CNVs, we re-engineered human CNVs
in mice using clustered regularly interspaced short palindromic
repeats (CRISPR)–based genome editing.

Results: Of the individuals studied, 10% harbored CNVs
segregating with the phenotype in the affected families. We
identified 31 CNVs previously associated with congenital limb
malformations and four novel candidate CNVs. Most of the

disease-associated CNVs (57%) affected the noncoding cis-regula-
tory genome, while only 43% included a known disease gene and
were likely to result from gene dosage effects. In transgenic mice
harboring four novel candidate CNVs, we observed altered gene
expression in all cases, indicating that the CNVs had a regulatory
effect either by changing the enhancer dosage or altering the
topological associating domain architecture of the genome.

Conclusion: Our findings suggest that CNVs affecting noncoding
regulatory elements are a major cause of congenital limb
malformations.
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INTRODUCTION
The extensive clinical and genetic heterogeneity of congenital
limb malformation requires comprehensive analysis of
genome-wide genetic variation.1,2 Microarray studies in single
families have demonstrated the importance of copy-number
variants (CNVs) in limb malformations, but until now no
large scale-study in this context has been performed.3,4 Recent
advances in genome-wide DNA analysis technologies, such as
array comparative genomic hybridization (CGH) and whole-
genome sequencing, have led to an increased identification of

smaller noncoding CNVs.5–7 Identified CNVs are generally
interpreted by comparing them with existing databases, thus
linking the effects of gene dosage with phenotypes. In many of
these instances, however, these explanations are unsatisfac-
tory; the effects of noncoding variants remain difficult to
predict and many unexplained cases have been thought to
result from so-called “position effects”.8,9

Our increased understanding of genomic folding has
bolstered our ability to functionally annotate noncoding CNVs.
Chromosome conformation capture (i.e., Hi-C) sequencing
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experiments have revealed that the genome is divided into
large, megabase-scale interacting compartments, termed A/B
compartments, which are themselves composed of more local
chromatin interaction units termed topological associating
domains (TADs).10,11 Neighboring TADs are separated by
boundary regions that are strongly enriched in architectural
proteins (i.e., CTCF and cohesion).12

The discovery of TADs and our increased understanding of
long-range regulation have allowed us to better understand
the mechanisms underlying position effects.10 CNVs have the
potential to alter the architecture of TADs within the genome
by deleting or duplicating noncoding enhancer elements, or
misplacing TAD boundaries.3,7,13,14 These findings are directly
relevant to human genetics, especially considering that most
genetic studies focusing on coding variants failed to identify the
molecular cause in over 40% of the families studied.15,16 A large
proportion of the remaining cases may therefore be explained
by alterations outside the coding regions.
In this study, we performed copy-number analysis in 340

unrelated individuals with congenital limb malformation. In
10% of the families, we identified CNVs that were either de
novo or segregated with the phenotype in the affected
families. To further investigate four novel candidate CNVs,
we generated transgenic mice using the clustered regularly
interspaced short palindromic repeats (CRISPR)–CRISPR
associated protein 9 (Cas9) system. Our data indicate that
most CNVs in this cohort of patients with congenital limb
malformation affect noncoding regulatory elements.

MATERIALS AND METHODS
Subjects and ethics approval
Venous blood and genomic DNA samples were obtained from
the subjects using standard procedures. All individuals
provided written informed consent to participate in the study
and have their patient photos published. The study was
approved by the Charité Universitätsmedizin Berlin ethics
committee.

Microarray-based CGH
Array CGH was carried out using a whole-genome 1M
oligonucleotide array (Agilent; Santa Clara, CA). 1 M arrays
were analyzed by Feature Extraction version 9.5.3.1 and CGH
Analytics version 3.4.40 or Cytogenomics version 2.5.8.11
software, respectively (Agilent). The analysis settings used
were as follows: aberration algorithm: ADM-2; threshold: 6.0;
window size: 0.2 Mb; filter: 5probes, log2 ratio = 0.29. Data
were submitted to the Database of Chromosomal Imbalance
and Phenotype in Humans using Ensembl Resources
(DECIPHER; http://decipher.sanger.ac.uk); accession num-
bers are listed in Supplementary Tables S3–5.

Quantitative real-time polymerase chain reaction (qPCR)
We performed qPCR as previously described17 using genomic
DNA of the index subjects and family members to confirm
the deletions and show segregation with the phenotype. The
primer sequences are given in Supplementary Table S6.

CRISPR single-guide RNA selection and cloning
Single-guide RNA was designed flanking the regions to be
rearranged. We used the http://crispr.mit.edu/ platform to
obtain candidate single-guide RNA sequences. Complementary
strands were annealed, phosphorylated, and cloned into
the BbsI site of the pX459 or pX330 CRISPR–Cas vector.
The CRISPR single-guide RNA sequences are listed in
Supplementary Table S7.

Mouse strains
The Del(rel5-Atf2) allele is described by Montavon et al.18

The transgenic mice were generated from G4 cells
(129xC57BL/6 F1 hybrid embryonic stem cells). The calcula-
tion of sample size was performed by power analysis and
randomization was performed. The investigator was blinded
to the group allocation of the animals during the experiment.

Generation of transgenic embryonic stem cells
Roughly 300,000 G4 cells (129xC57BL/6 F1 hybrid embryonic
stem cells) were seeded on CD-1 feeders and transfected with
8 μg of each CRISPR construct using FuGENE technology
(Promega; Madison, WI). When the construct originated from
the pX330 vector, cells were cotransfected with a puromycin-
resistant plasmid. In contrast, PX459 already contains a
puromycin-resistant cassette. After 24 h, the cells were split
and transferred onto DR4 puromycin-resistant feeders and
selected with puromycin for 2 days. Clones were then grown
for 5–6 more days, picked and transferred into 96 well plates on
CD-1 feeders. After 2 days of culture, the plates were split in
triplicates—two for freezing and one for growth and DNA
harvesting. Positive clones identified by PCR or Sanger
sequencing were thawed and grown on CD-1 feeders until
they reached an average of 4 million cells. Three vials were
frozen and DNA was harvested from the rest of the cells to
confirm genotyping. PCR-based genotyping and qPCR were
performed as previously described.17

Embryonic stem cell aggregation
A frozen embryonic stem cell vial was seeded on CD-1 feeders
and cells were grown for 2 days. Mice were generated by
morula aggregation and tetraploid complementation.19 All
animal procedures were in accordance with institutional,
state, and government regulations (Landesamt für Gesundheit
und Soziales, Berlin, Germany).

In situ hybridization and skeletal preparations
In situ hybridization for Fgf8 and Nkx2–3 was carried out on
wild-type embryos (C57/Bl6J) and mutant embryos at
embryonic stage E11.5. Skeletal preparations and alizarin
red staining of E18.5 wild-type and mutant embryos was
performed as previously described.20

Databases and in silico analysis
We used the databases DECIPHER (https://decipher.sanger.
ac.uk/), ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/), and
the Database of Genomic Variants (http://dgv.tcag.ca/dgv/
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app/home), and the VISTA Enhancer Browser (http://
enhancer.lbl.gov) to classify the CNVs.21–23 The processing
of the Hi-C data was performed by the Ren Lab10 and
downloaded via http://chromosome.sdsc.edu/mouse/hi-c/
download.html.
The Gene Expression Omnibus accession numbers for the

chromatin immunoprecipitation followed by high-throughput
DNA sequencing data for the H3K27ac enhancer mark
reported by Cotney et al. are GSE42413 and GSE42237.24

RESULTS
We collected a cohort of 340 individuals affected with isolated
congenital limb malformations. After clinical and radio-
graphic examination, we performed high-resolution array
CGH as a first screening test (Figure 1 and Supplementary
Table S1). Segregation analysis in the parents was performed
by qPCR after comparing candidate CNVs with known limb
genes according to the Human Phenotype Ontology project,25

cross-species phenotype comparison,26 mouse models,27 gene
expression data,28 limb enhancer elements,24,29,30 and the
TAD architecture of the locus.10,16 The results are summar-
ized in Supplementary Tables S2–5. We detected 715 CNVs
(>10 kb) that were extremely rare or absent in the common
CNV databases (Supplementary Information). We identified
35 CNVs in unrelated individuals that were de novo or
segregating with the phenotype in the family, corresponding
to 10% in this cohort. A total of 31 subjects harbored CNVs
that had previously been linked to disease in at least three
unrelated individuals (Supplementary Figure S1 and
Supplementary Tables S3–5, including literature
references). In addition, we identified CNVs in four regions
that had not previously been linked to limb malformations
(Supplementary Table S2).
Next, we investigated how many cases could be explained

by gene dosage (gain or loss) of a known disease gene located
within the CNV, and how many CNVs did not include a
disease gene themselves, but might result from a noncoding
position effect on neighboring genes. We manually inspected
the entire TAD around each CNV for the presence of the
following features: genes known to play a role in limb
development or limb genes according to the Human
Phenotype Ontology (HPO),25 cross-species phenotype
data,26 available mouse models,27 or available gene expression
data.28 We also screened the regions inside and around each
CNV for the presence of known enhancers that might drive
expression in the limb according to the VISTA database23 and
based on chromatin immunoprecipitation sequencing experi-
ments performed in human and mouse limb tissues.24,29,30 In
addition, each CNV was placed within known Hi-C maps of
the human genome to investigate its position relative to TADs
and their boundaries.10,31

Disease-associated loci: gene dosage
In 15 of the 35 subjects (43%), we identified CNVs that had
previously been associated with disease in at least three
unrelated individuals (Supplementary Table S3). Five

showed de novo deletions of genes known to be involved in
limb defects based on reported cases with de novo loss-of-
function mutations (Supplementary Figure S2) (i.e., DLX5/
DLX6, GDF5, GLI3, HDAC4, and ZAK). Five subjects carried
de novo tandem duplications of BHLHA9, a known cause for
split hand/foot malformation.32 The exact pathomechanism
of BHLHA9 duplications is still unclear, but the gene is highly
expressed in the apical ectodermal ridge, and homozygous
mutations in BHLHA9 cause syndactyly.32,33

In five subjects, we identified recurrent microdeletion or
microduplication syndromes (i.e., 16p11.2 microdeletion
syndrome, 16p13.1 microduplication syndrome, or 2q37.3
microdeletion syndrome). These microdeletion or microdu-
plication syndromes are characterized by a highly variable
phenotypic spectrum and low penetrance. While limb defects
have been described in patients with these recurrent CNVs,34

it is likely that other modifiers also contribute to the limb
defects.

Disease-associated loci: noncoding cis-regulatory effects
In 16 of the 35 individuals (46%), we identified CNVs that
had previously been associated with limb defects in at least
three unrelated individuals. These CNVs did not include a
disease gene themselves, but resulted in a position effect on
known limb genes (Supplementary Table S4). Three of the
subjects carried de novo CNVs deleting an enhancer element
resulting in a tissue-specific loss of function of the limb genes
DLX5/6 over 950 kb telomeric to the deletion. Eleven subjects
harbored duplications of limb enhancer elements causing a
regulatory gain of function of the known disease genes SHH
and FGF8. The duplicated enhancer elements were located
1Mb and 200 kb away from their target genes, respectively.
Two subjects had CNVs resulting in “enhancer-adoption” at
the PAX3 locus. This mutational mechanism describes the
disruption of a TAD boundary, thereby allowing enhancers
from neighboring domains to ectopically activate genes to
cause misexpression and consequently disease.14

Novel candidate loci
In 4 of the 35 individuals (11%), we identified CNVs at loci
previously not known to be associated with limb malforma-
tions (Figure 2a–d and Supplementary Table S2). Three
CNVs were de novo and one segregated perfectly with the
phenotype in a large family. To investigate these candidate
CNVs, we took advantage of an existing mouse model at the
HoxD locus18 and re-engineered the other human CNVs in
mice using the CRISPR–Cas9 system. We used two guide
RNAs in mouse embryonic stem cells to generate large
deletions and duplications.17

We detected a 440-kb microdeletion on chromosome 2q31
in an individual with shortening of the metacarpals
compatible with a brachydactyly type E (Figure 2a,e,f). The
CNV is dominant and segregates perfectly with the trait in
this large family (Supplementary Figure S3). The deletion is
located within the regulatory archipelago of the HOXD gene
cluster, which is essential for limb development, and removes
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several known limb enhancer elements.18 We bred
homozygous HoxDDel(rel5-Atf2) mice harboring a similar
deletion at the Hoxd cluster (Supplementary Figure S4).
Montavon et al.18 originally created this mouse model to
characterize regulatory elements at the HoxD locus. We
performed skeletal staining of homozygous Del(rel5-Atf2)
embryos at E18.5 and identified severe shortening of the
metacarpals, thus recapitulating the human brachydactyly
phenotype (Figure 2f). In mice, the deletion results in a 90%
reduction of Hoxd13 expression—a known disease gene for
brachydactyly type E.18

Subject 2 presented with preaxial polydactyly of the hands
and proximal hypoplasia of the radius (Figure 3a). We
detected a de novo 730-kb microdeletion on chromosome
10q24.2 (Figure 3b and Supplementary Figure S5), which
removes three protein-coding genes with no established role
in limb development.35 Two known limb enhancers map
centromeric to the deleted region24,29,36 and the deletion also
removes a TAD boundary (Figure 3b).31 We suspected
enhancer adoption and engineered mice with the
corresponding deletion to investigate the expression of the
telomeric gene NKX2–3.5 Our data show that Nkx2–3 was

1 M array - CGH of 340 subjects
19.043 variants

(an average of 56 variants per subject)

Variant filtering and qPCR confirmation
via Database of Genomic Variants,
DECIPHER, and in house database

715 rare variants

20 rare CNVs of unknown clinical significance
including known limb disease genes

(inherited from a healthy parent)

15 CNVs (43%) were caused by
gene dosage effects or haploinsufficiency
(previously described in at least 3 families)

16 CNVs (48%) resulted in position effects
on know limb disease ganes

(previously described in at least 3 families)

Mouse models

Mouse 1: short metacarpals (Figure 2)

Mouse 2: Nkx2–3 misexpression in the forelimb
corresponding to the patient′s

phenotype (Figure 3)

Mouse 4: downregulation of Adamts18
in the limb bud but no phenotype

(Figure 5)

Mouse 3: upregulation of Tbx15 expression
and preaxial polydactyly

of the hindlimbs (Figure 4) 

35 disease-associated CNVs
(de novo or segregating in the family)

20 CNVs (57%) likely to cause changes
in the non-coding cis-regulatory landscape

Subject 1: type E brachydactyly
440-kb deletion in chromosome 2q31.1

Subject 2: radial hypoplasia and
preaxial polydactyly

730-kb deletion in chromosome 10q24.2

Subject 3: short stature and
radial deficiency

520-kb duplication in chromosome 1p12

Subject 4: split hand/foot malformation
2-Mb deletion in chromosome 16q23.1-q23.2

4 CNVs (11%) present new candidates
not previously reported to associate

with limb defects

Figure 1 Study design and workflow. High-resolution array CGH was performed as a first screening test in a cohort of 340 individuals affected with
isolated congenital limb malformations.
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indeed misexpressed in the forelimb (Figure 3b), correspond-
ing to the patient’s phenotype. However, we did not observe
any limb abnormalities at E18.5. A larger control deletion
including the limb enhancers showed no misexpression of
Nkx2–3 (Figure 3b). Our data suggest that enhancer adoption
is the driver of ectopic Nkx2–3 expression in the limb.
In subject 3, who was affected by short stature and radial

deficiency, a de novo 520-kb microduplication on chromosome
1p12 was identified (Figure 4a,b and Supplementary
Figure S6). The duplication is located centromeric to TBX15,
a key gene in limb development, and encompasses the enhancer
element hs1428,23 which was shown to drive expression in the
limb bud in a Tbx5-like fashion (Figure 4c,d). Mice with the
corresponding duplication showed an upregulation of Tbx15
expression at E11.5 (Figure 4e). In contrast to the patient’s
phenotype, mice with the deletion showed preaxial polydactyly

of the hindlimbs (Figure 4f), indicating that the deletion has an
effect on limb development, albeit with a different outcome in
mice compared with humans.
In subject 4, presenting with split hand/foot malformation,

a de novo 2-Mb deletion on chromosome 16q23.1-q23.3 was
detected (Figure 5a and Supplementary Figure S7). The
deletion removes four protein-coding genes without any
established role in limb development35 for which several loss-
of-function mutations have been described in the Exome
Aggregation Consortium database. The deletion also removes
two TAD boundary elements and several potential limb
enhancer elements marked by the histone modification
H3K27ac in human embryonic limbs (Figure 5a).10,24 We
show that the flanking gene Adamts18 is expressed in the
apical ectodermal ridge of the developing mouse limb bud at
E11.5 (Figure 5b). Mice harboring a human-like deletion
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showed significant downregulation of Adamts18 in the limb
(Po 0.05) (Figure 5c,d). The gene located telomeric to the
deletion Maf also showed expression during limb
development at E11.5 (Figure 5e,f), but mice harboring a
human-like deletion showed no altered expression of Maf in
the limb (Figure 5g); in particular, Maf did not adopt
Adamts18-like expression in the apical ectodermal ridge. All
mice harboring the homozygous deletion were phenotypically
normal at birth. Adamts18 knockout mice do not show a limb
phenotype,37 indicating that the downregulation of Adamts18
is not the underlying disease mechanism or that mouse and
humans respond differently to the observed deletion.
Together, these results provide evidence for disease

association of the first three CNVs (subjects 1–3) by
regulatory loss of function, enhancer adoption, and regulatory

gain of function, respectively. However, it remains unclear if
the de novo deletion in subject 4 is causative for the split
hand/foot phenotype.

Very rare inherited CNVs
In 20 of the 340 subjects (6%), we identified very rare CNVs
of unknown clinical significance that were inherited from a
healthy parent (Figure 5i). These rare CNVs involved
important limb genes (e.g., FGFR2, GNAS, GREM1, and
RUNX2) and were likely to play a role in the skeletal
phenotypes, since a reduced penetrance is often present in
limb malformations.1 However, it needs to be considered that
these rare inherited CNVs may not have been responsible for
the limb defects. The clinical descriptions and family histories
of the subjects can be found in Supplementary Table S5.
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Figure 5 A de novo 2-Mb deletion on chromosome 16q23.1-q23.3 in a patient with split hand/foot malformation. (a) In subject 4, who
presented with split hand/foot malformation, a de novo 2-Mb deletion on chromosome 16q23.1-q23.3 was detected. The deletion removes four
protein-coding genes without any established role in limb development.35 The deletion also removes two TAD boundary elements (red) and several
potential limb enhancer elements marked by the histone modification H3K27ac in human embryonic limbs (blue ovals).10,24 (b) The flanking gene
Adamts18 is expressed in the apical ectodermal ridge of the developing mouse limb bud at E11.5. (c) Mice harboring a human-like deletion do not
show ectopic expression of Adamts18. (d) Mice harboring a human-like deletion show significant downregulation of Adamts18 in the limb. *P o 0.05.
(e) The gene located telomeric to the deletion Maf is also expressed in the developing mouse limb bud at E11.5. (f,g) Mice harboring a human-like
deletion are phenotypically normal at birth (f) and show no altered expression of Maf in the limb (g). (h) A total of 35 disease-associated CNVs (true de
novo or segregating in the family) were identified in a cohort of 340 unrelated individuals with congenital limb malformations, corresponding to an
overall CNV rate of 10%. (i) Of the 340 subjects, 20 (6%) carried rare CNVs of unknown clinical significance (VOUS) that were inherited from a healthy
parent. (j) Only 43% (15 cases) of the disease-associated CNVs included a known limb gene causing gene dosage effects or haploinsufficiency, whereas
most of the CNVs (57%) were likely to cause changes in the noncoding cis-regulatory landscape. Error bars: STD.

Noncoding CNVs cause congenital limb malformation | FLÖTTMANN et al ORIGINAL RESEARCH ARTICLE

GENETICS in MEDICINE | Volume 20 | Number 6 | June 2018 605



Most CNVs in congenital limb malformation affect
noncoding regulatory elements
In this study, we identified 35 disease-associated CNVs (de
novo or segregating with the phenotype) in a cohort of 340
individuals with congenital limb malformations, which
corresponds to 10% (Figure 5h,i and Supplementary
Tables S1, 3, and 4). This is comparable to copy-number
studies of intellectual disability, in which array CGH was the
first-line test and usually 10–15% of the patients harbored de
novo CNVs.16 Interestingly, only 43% of the CNVs identified
here directly included a known limb gene causing gene dosage
effects or haploinsufficiency (Figure 5i,j and Supplementary
Table S3), whereas most of the CNVs (57%) were localized in
noncoding regions. Of those cases, 46% (16 cases) resulted in
position effects on known limb disease genes that had
previously been described in at least three unrelated families
(Figure 5j and Supplementary Table S4). The remaining 11%
(four cases) present new candidate CNVs not previously
reported to be associated with limb defects.

DISCUSSION
In this study, we applied high-resolution copy-number analysis
to 340 unrelated subjects with congenital limb malformation
and identified disease-associated CNVs in 10% of the cases
studied, which is comparable to copy-number studies in other
cohorts, such as in individuals affected with intellectual
disability.16 To investigate the four candidate CNVs not
previously reported to associate with limb malformations, we
generated mouse models. Our results indicate that CNVs have
the potential to interfere with normal gene regulation by either
altering enhancer dosage or changing the TAD architecture of
the genome. Deletions that remove TAD boundaries can result
in gene misexpression and consecutive disease. In our cohort,
most of the CNVs (57%) affected the noncoding cis-regulatory
genome, while only 43% included a known disease gene and
therefore likely result in gene dosage effects. Our findings
suggest that CNVs affecting noncoding regulatory elements are
a major cause of congenital limb malformations.
Our data have several implications for the clinical

interpretation of CNVs. First, we show that the proportion
of CNVs that cause position effects is much higher than
previously expected, at least in limb malformations.38,39 While
only two CNVs reported here do not include a gene at all (and
are therefore truly noncoding), most of the CNVs include
genes that are not involved in limb development. Our data
indicate that CNVs can also alter genomic architecture by
deleting or duplicating enhancer elements or misplacing TAD
boundaries, thereby allowing enhancers from neighboring
domains to ectopically activate genes, resulting in misexpres-
sion and disease. Several recent studies have also highlighted
the role of rare noncoding variants as risk factors for autism
spectrum disorder.40,41 These mutational mechanisms must
be considered when medically interpreting CNVs.3,13,14

Second, our study represents the largest CNV screen in
patients with isolated congenital limb malformation so far.
Similar large-scale CNV morbidity maps already exist for

developmental delay16 and congenital kidney malformation42

and have proven to be important resources for the clinical
interpretation of CNVs. We identified 715 CNVs in 340
individuals that are either extremely rare or have not
previously been reported in the common databases such as
DECIPHER, ClinVar, and the Database of Genomic Variants
(Supplementary Information). We show that 35 of these
CNVs are de novo or segregate with the phenotype in the
family, while 20 were inherited from a healthy parent and
represent variants of unknown clinical significance. This
unique CNV map represents a powerful resource for the study
of limb malformations, in particular since reduced penetrance
is a key feature in limb defects.1

Our study also has several limitations. First, not all human
candidate CNVs result in a similar phenotype in mice.
Therefore, defining the clinical relevance of these CNVs
remains difficult. While we observed a human-like phenotype
for the re-engineered deletion at the HOXD locus, others
resulted only in a molecular phenotype or a different limb
phenotype. The inheritance patterns of the CNVs and our
functional data provide evidence for the disease association of
the first three CNVs (subjects 1–3). However, it remains
unclear if the de novo deletion in subject 4 was causative for
the split hand/foot phenotype. For further validation of the
candidate CNVs, more unrelated families must be identified.
Our data also demonstrate the limitations of mouse models of
human congenital disease. The differences between human
and mouse phenotypes are most likely a result of species
differences, as well as enhancer redundancy in mice, which
has been described in several recent studies.3,43

Second, the CNV detection rate of 10% in patients
with congenital limb malformation reported here might
be slightly overestimated since our cohort is partially biased
by the initial clinical selection. In this study, array CGH was
used as a first screening test for all samples, but some samples
were sent to us by collaborating laboratories only after
candidate gene testing was performed and yielded no result.
Third, our cohort is enriched with split hand/foot patients
for whom chromosomal rearrangements are the more
frequent cause.
An important question is whether our results are specific to

limb malformations and to what extent noncoding CNVs
affect other cohorts (e.g., intellectual disability). In many
cohorts, CNVs are exclusively interpreted by the gene dosage
approach,16,42 and future studies must account for the cis-
regulatory landscape of CNVs when attempting to identify
potential target genes.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the
paper at http://www.nature.com/gim
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