Genetics in Medicine

Use of bioinformatic tools in primer validation

To the Editor: We read with great interest the article "Similar Prevalence of Expanded CGG Repeat Lengths in the Fragile X Mental Retardation I Gene Among Infertile Women and Among Women With Proven Fertility: A Prospective Study," by De Geyter et al.,¹ which describes an interesting approach to measuring the CGG repetitions in the 5' untranslated region (5' UTR) on the *FMR1* gene. However, as we were validating the approach, we found some issues regarding the first set of locus-specific primers for the conventional polymerase chain reaction (PCR), the first step of its methodology.

We performed an initial analysis using primer 3 with the sequence of the 5' UTR region containing the CGG repetition site (GenBank accession number L29074.1) and the primers reported by De Geyter et al.¹ However, to our surprise, the output showed no match for any of the primers reported. Intrigued, we performed a BLAST, and both primers (forward and reverse) showed 100% identity with the human FMR1 gene.

To clarify this, we decided to search the primer's sequence using the National Center for Biotechnology Information's Variation Viewer. Interestingly, both of the primer's sequences presented a match only for the *FMR1* gene, although in an unexpected manner. The sequence presented as the forward primer was in the negative strand, in 3'-5' sense, making it, by definition, the reverse primer (R'). Likewise, the sequence presented as the reverse primer was in the positive strand, in 5'-3' sense (F'). Moreover, both of the sequences had reported variants according to the Variation Viewer. The true reverse primer (R') had two variants reported in the middle of the target sequence, and the true forward primer (F') had one variant reported at the 3' end (**Figure 1**).

When we repeated the analysis using the new primer's positions with primer 3 (ref. 2), the R' primer resulted in no match, a fact that we attribute to the reported variants. The F' primer validation, although a match, showed high Tm (71.88°C) and high hairpin stability.

The primers reported by De Geyter et al.,¹ although corresponding to the desired region, were not considered optimal when analyzed by different bioinformatics tools. First, variants found in the target region in both primers could lead to mismatches between targets and primers in the samples. Even

rimary assembly m	apping										
Assembly	SNP to	o Chr Chr	Chr positio	n	Contig	Contig positi	on Allele				
GRCh38.p2	Fw	vd X	147928802	2 <u>NT</u>	011681.17	3453196	G				
RefSeqGene Mappin	9										
RefSe	qGene	Gene (ID)	anna anna anna ann	SNP to RefS	eqGene	Position	Allele				
NG D	07529.1	FMR1 (2332)		Fwd		21812	G				
ene Model(s)											
Function		mRNA				Protein					
Tunction	SNP to mRNA	Accession	Position	Allele change	Accession	Position	Residue change				
ncRNA	Fwd	NR 033700.1	643	$NA \Rightarrow NA$	NA	NA	NA				
ncRNA	Fwd	NR 033699.1	643	$NA \Rightarrow NA$	NA	NA	NA				
cds-synon	Fwd	NM 002024.5	643	$CGG \Rightarrow CGA$	NP 002015.1	<u>138</u>	$R [Arg] \Rightarrow R [Arg]$				
cds-synon	Fwd	NM 001185082.1	643	$CGG \Rightarrow CGA$	NP 001172011.1	138	$R\left[Arg\right] \Rightarrow R\left[Arg\right]$				
cds-synon	Fwd	NM 001185081.1	643	$CGG \Rightarrow CGA$	NP 001172010.1	<u>138</u>	$R [Arg] \Rightarrow R [Arg]$				
cds-synon	Fwd	NM 001185076.1	643	$CGG \Rightarrow CGA$	NP 001172005.1	138	$R [Arg] \Rightarrow R [Arg]$				
cds-synon	Fwd	NM 001185075.1	643	$CGG \Rightarrow CGA$	NP 001172004.1	138	$R [Arg] \Rightarrow R [Arg]$				

D NC_000023.11: 148M.	.148M (60bp) •	• Fir	nd:					•		>1	- 0				-1	+	alle																			
147,911,920									147.91 147911932 147911936 147.911,948																	14	7,911,9	50		147	147911955					,960	
о с с с с с с	T	C A	G	т	C .	A G	G	с	G	с 1	Г (c ø	1 (G (c	т (c (G	Т	Т	Т	C (G G	Т	т	Т	с	A	c	ΤT	r c	С	G	G ·	τc	G G	A G
AGCCGG	A	GΤ	с	Α	G	тс	с	G	С	G A	1 (G 1	r (c (G	A (3 G	зc	A	A	A	G (c c	A	A	A	G	T	G	A A	G	G	с	C I	A (с с	тс
Genes, NCBI Homo sap	iens .	Annot	ation	n Re	lease	e 107,	201	15-03	-13												14																
																											Į	>			>				>		
*	4				<			<				<			Eľ	RIERS	1/NR	02450	0.1/NF	0245	93.2/	NR 02	1502.2	/NR Ø	24591	2/NR	624 <	499.2		<	3			<			<
dbSNP Build 146 (Hom	no sap	iens	Annot	tati	on Re	elease	107	7) al	1 da	ata										-	14	-														-	
rs78261	8434 🔳	= c/	G																													rs7	818683	885 🔳			B
Suspect variations,	dbSNP	Buil	d 14	6 (H	omo s	sapier	ns An	nota	tion	n Rel	leas	se 10	07)									14														(Contrary)	
Somatic alleles, dbS	NP Bu	ild 1	.46 (1	Homo	sap:	iens 1	Annot	atio	n Re	eleas	se 1	.07)																				COUNTRY OF				10/10/10	
dbSNP Build 146 (Hom	no sap	iens	Annot	tati	on Re	elease	107	7) GM	AF>	=0.01	1										14															-	
ClinVar Short Variat	ions	based	ion	dbSN	P Bu:	ild 14	16 (H	Iomo	sap:	iens	Ann	otat	tior	n Re	lea	se 1	07),	, 201	6-02	2-03																1	
Cited Variants, dbSN	P Bui	ld 14	6 (He	omo	sapie	ens Ar	nnota	tion	Re	Lease	= 10)7)									14																
GWAS Results based o										1000	-				222						14.1	L.H.J									100	-			10122		

GeneView via direct blast against RefSeq sequences (used when no gene model is available): N/A

Figure 1 Reverse primer as reported by De Geyter et al.¹: GCTCAGCTCCGTTTCGGTTTCACTTCCGGT. Note that the sequence is in the positive strand in the 5'–3' direction.

LETTER TO THE EDITOR

though several studies have shown that a target can be amplified with few mismatches, a single base mismatch at the 3' end as well as a few mismatches in the middle or toward the 5' end generally reduce the PCR efficiency, although in different degrees. Mismatches in the 3' end affect the target amplification greater than mismatches toward the 5' end or in the middle.^{3,4}

Second, the analysis performed by primer 3 software showed high Tm for the F' primer, as well as high hairpin stability. Although it is possible to amplify templates with primers with high Tm using a two-step PCR, the methodology specifically states that they used the GC-Rich PCR system's instructions (Roche Applied Sciences, Rotkreuz, Switzerland), which follow a traditional PCR protocol. This, combined with the calculated high hairpin stability, and the variant in the 3' end could have had a negative effect on the PCR efficiency.^{3,4} Because the conventional PCR was the first step in its three-step protocol,¹ and because it was the one that defined which samples would undergo a triplet PCR, this reduced efficiency would be undesirable.

Locus-specific primers are, arguably, the most important variable in a successful PCR. With the advent of new technological tools to generate and validate primers,⁴ it is important that investigators use these tools to maximize the efficiency of PCR, especially in the first steps of the methodology, because many samples might be incorrectly characterized as normal, possibly compromising the results of the study. Furthermore, an adequate report of the primer's sequence and orientation is crucial because it helps in the reproducibility of the results, the validation of the study, and the use of the methodology in subsequent studies.

ACKNOWLEDGMENTS

This work is part of the project "Determination of Fragile X Syndrome in Patients With Autism in Bucaramanga," which is funded by an investigation grant provided by the Universidad Industrial de Santander, Bucaramanga, Colombia.

DISCLOSURE

The authors declare no conflict of interest.

Julieth A. Sierra-Delgado, MD¹, Viviana L. Pérez, MSc¹ and Clara I. Vargas, MD, MSc¹

¹Grupo de Investigación en Genética Humana (GENEHUIS), Departamento de Ciencias Básicas, Facultad de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia. Correspondence: Julieth A. Sierra-Delgado (andreasierrad@outlook.com)

REFERENCES

- De Geyter C, M'Rabet N, De Geyter J, et al. Similar prevalence of expanded CGG repeat lengths in the fragile X mental retardation I gene among infertile women and among women with proven fertility: a prospective study. *Genet Med* 2014;16:374–378.
- Untergasser A, Cutcutache I, Koressaar T, et al. Primer3–new capabilities and interfaces. Nucleic Acids Res 2012;40:e115.
- Sipos R, Székely AJ, Palatinszky M, Révész S, Márialigeti K, Nikolausz M. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. *FEMS Microbiol Ecol* 2007;60:341–350.
- Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012;13:134.

Advance online publication 14 July 2016. doi:10.1038/gim.2016.78