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INTRODUCTION
Vestibular schwannoma (VS), one of the most common intra-
cranial tumors in the lateral skull base,1 has a steadily increas-
ing incidence of up to 22.8 tumors per million people annually 
due to the innovation of diagnostic methods during the past 
several decades.2,3 The tumor arises from the vestibular branch 
of the eighth cranial nerve. Asymmetric hearing loss, tinnitus, 
disequilibrium, facial numbness, and weakness are presenting 
symptoms. Furthermore, hydrocephalus, brain stem compres-
sion, herniation, and death are potential hazards if the tumor is 
large enough. On the basis of the clinical features, such as tumor 
size, tumor growth rate, hearing level, and the patient’s individ-
ual life situation and preferences, the management options of 
VS could be chosen from “wait and scan,” stereotactic radiosur-
gery, fractioned radiotherapy, and surgical resection.4,5

Depending on neuroradiological appearance, VS could be 
categorized as one of two subtypes: solid VS (SVS) and cystic VS 
(CVS). The more formidable subtype, CVS, accounts for 6.8 to 
20.4% of VS based on several reports with larger series6–9 and is 
notorious for aggressive clinical features, including rapid tumor 
growth (2–6 mm/year),10 much more severe symptoms,11,12 
intensive adherence to the facial nerve,13 and difficulty predict-
ing its biological behavior. It often presents a dilemma for neu-
rotologists to choose optimal management: the “wait and scan” 

policy may delay the optimal therapeutic time due to sudden or 
persistent fast growth. Stereotactic radiosurgery or fractioned 
radiotherapy is not suitable for CVS because it may accelerate 
the expansion of the tumor.13 Surgical resection rarely gets sat-
isfactory postoperative functional outcomes in CVS.6–8,11,14,15

The NF2 gene encodes a 595-amino-acid protein known 
as schwannomin or merlin, which is similar to a class of 4.1 
superfamily of protein (moesin, ezrin, and radixin).16 It is 
implicated in the cell and cell-cycle control processes such as 
adhesion, migration, cell–cell contact, spreading, prolifera-
tion, and signal transduction.17 Mutations in NF2 gene play a 
critical role in VS pathogenesis18–20 and were the cause of VS in 
~66% of cases.21 They can occur through inheritance from an 
affected parent, mosaic or de novo zygote mutation, mutations 
during embryogenesis, or somatic mutations throughout life 
after birth.22,23

Despite extensive studies of NF2 mutations in VS, the role of 
NF2 or any other genes in cystic formation of VS remains elusive. 
In our previous clinical studies,15 we had retrospectively analyzed 
the aggressive clinical features and unfavorable surgical out-
comes of large or giant CVS. In this study, we intended to evalu-
ate the role of NF2 mutations in the pathogenesis of CVS by com-
parison of the mutation spectrum of NF2 between CVS and SVS. 
Differential gene expression of CVS versus SVS was investigated 

Purpose: We sought to characterize the mutation spectrum of NF2 
and the differential gene expression in cystic and solid vestibular 
schwannomas.
Methods: We collected tumor tissue and blood samples of 31 cys-
tic vestibular schwannomas and 114 solid vestibular schwannomas. 
Mutation screening of NF2 was performed in both tumor and blood 
DNA samples of all patients. cDNA microarray was used to analyze 
the differential gene expression between 11 cystic vestibular schwan-
nomas and 6 solid vestibular schwannomas. Expression levels of top 
candidate genes were verified by quantitative reverse transcription 
PCR.
Results: NF2 mutations were identified in 34.5% of sporadic ves-
tibular schwannomas, with all mutations being exclusively somatic. 
No significant difference was found between the mutation detection 
rates of cystic vestibular schwannoma (35.5%) and solid vestibular 

schwannoma (34.2%). cDNA microarray analysis detected a total 
of 46 differentially expressed genes between the cystic vestibular 
schwannoma and solid vestibular schwannoma samples. The signifi-
cantly decreased expression of four top candidate genes, C1orf130, 
CNTF, COL4A3, and COL4A4, was verified by quantitative reverse 
transcription PCR.
Conclusion: NF2 mutations are not directly involved in the cystic for-
mation of vestibular schwannoma. In addition, the differential gene 
expression of cystic vestibular schwannoma reported in our study 
may provide useful insights into the molecular mechanism underly-
ing this process.
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using the cDNA microarray analysis. Top candidate genes were 
verified by quantitative reverse transcription PCR (qRT-PCR).

MATeRIALs AND MeTHODs
Patients
We retrospectively reviewed 145 patients with sporadic VS, 
including 31 patients with CVS and 114 with SVS, who under-
went surgical resection in our department between June 2008 
and June 2011. Magnetic resonance imaging was routinely 
performed to make the neuroimaging diagnosis (Figure 1). A 
tumor was labeled as CVS or SVS depending on two key points:8 
(i) presence or absence of hypodense/hypointense areas on 
T1-weighted postgadolinium magnetic resonance imaging and 
(ii) identification of cystic or solid elements during the surgery. 
Enhancement of the cyst wall was used as the imaging marker 
to differentiate CVS from arachnoid cysts and epidermoids.24

Tumor size measurement was based on the largest diam-
eter of the extrameatal portion in cerebellopontine angle from 
T1-weighted magnetic resonance imaging with gadolinium. 
Facial nerve function was assessed from grade I (normal) to VI 
(worst) using the House–Brackmann grading system.25 Hearing 
level was evaluated from class A (normal) to D (worst) using 
the American Academy of Otolaryngology–Head and Neck 
surgery classification.26

All tumor tissue samples underwent routine histology, and 
the diagnoses were confirmed by a pathologist. All patients 
signed an informed consent form releasing tumor tissue and 
blood sample for research purposes. This study was approved 
by the ethics committee of the Shanghai Jiaotong University 
School of Medicine, Xinhua Hospital, Shanghai, China.

Mutational screening of the NF2 gene
DNA samples were extracted from both fresh-frozen tumor tis-
sues and blood samples of all patients using the the TIANamp 
genomic DNA kit (Tiangen Biotech, Beijing, China). All 17 
exons of NF2 were PCR amplified and subjected to bidirectional 
sequencing as previously described.27 Sequence data were ana-
lyzed using Sequencer 4.9 software (Genecode, Ann Arbor, MI).

cDNA microarray analysis
cDNA microarray analysis was performed in 11 CVSs (T114, 
T115, T145, T116, T134, T127, T137, T141, T132, T140, and 
T142) and 6 SVSs (T125, T126, T128, T135, T144, and T139). 
Tumor tissues were harvested from the subcapsular part and 
immediately immersed in the RNAlater RNA stabilization 
reagent (Qiagen, Shanghai, China) and stored at 4 °C until 
use. mRNA samples were extracted using the TRIzol reagent 
(Invitrogen, Carlsbad, CA) and reverse transcribed to comple-
mentary DNA using the Quantscript RT kit (Tiangen Biotech). 
Hybridization was performed using the Illumina Human-12T 
v4 Expression BeadChip system (Illumina, San Diego, CA), 
which contains 47,231 probes per array product. Normalization 
algorithms were used to transform sample signals to mini-
mize the effects of variation arising from nonbiological fac-
tors. Analysis of gene expression profiles was completed by the 
Illumina BeadStudio module application (Illumina). A twofold 
or greater difference in the intensity of gene expression between 
the CVS and SVS was sought. Overexpressed or underexpressed 
genes were cataloged. The t-test with unpaired unequal vari-
ance (Welch) was used to calculate P values. Adjusted for mul-
tiple testing, the inclusion criteria of the differentially expressed 

Figure 1  Magnetic resonance imaging of representative cystic and solid vestibular schwannomas. (a–c) A left cystic vestibular schwannoma 
(CVS) ~45 mm in diameter. It manifested a (a) heterogeneous hypodensity lesion in axial T1-weighted image and (b) multicystic hyperdensity lesion in axial 
T2-weighted image. (c) The enhancement of the cyst wall and multicystic tumors is shown in axial T1-weighted postgadolinium. (d–f) A right solid vestibular 
schwannoma (SVS) ~40 mm in diameter. It manifested a (d) homogeneous hypodensity lesion in axial T1-weighted image, (e) hyperdensity lesion in axial 
T2-weighted image, and (f) homogeneous enhanced lesion in axial T1-weighted postgadolinium.
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genes were P < 0.005 and fold change >2, or P < 0.01 and fold 
change >10. Genes with the largest fold changes and/or those 
known to be involved in cell growth, proliferation, and onco-
genesis signaling pathways were selected and further evaluated 
by qRT-PCR.

qRT-PCR
The differential expression of five top candidate genes, 
CLORF130, CNTF, FGFBP2, COL4A3, and COL4A4, was 
further evaluated by SYBR green–based qRT-PCR. mRNA 
samples were extracted and reverse transcribed as described 
in the cDNA analysis. qRT-PCR primers and probes of each 
gene were designed using ABI Primer Express Software v2.0 
(Applied Biosystems, Foster City, CA; sequences shown 
in Supplementary Table S1 online). qRT-PCR analysis 
of the cDNA samples was performed using the ABI Prism 
7700 sequence detection system (Applied Biosystems) fol-
lowing standard procedure.28 Data were analyzed using the 
ABI Prism sequence detection system software (Applied 
Biosystems). Quantitative expression data of each specific 
target were obtained for each cDNA sample. Expression of the 
β-actin gene was used as endogenous normalization control. 

Mann–Whitney test was used to compare the median expres-
sion values. The comparative threshold of cycle (CT) method 
was used to determine any difference in target expression 
between CVS and SVS. All values were log2 transformed 
before statistical analysis.

statistical analysis
Statistical analysis of the study was performed in the facilities 
of the Molecular Biology of Hearing and Deafness Research, 
Xinhua Hospital. Fisher’s exact test and odds ratio calcula-
tion were used to compare surgical outcomes and NF2 muta-
tion rate. P values were presented as the result of the two-tailed 
analysis. Mann–Whitney test was used to compare the median 
expression values in qRT-PCR. Pearson correlation was used to 
compare the correlation between results of cDNA microarray 
and qRT-PCR.

ResULTs
CVs was associated with more severe symptoms than sVs
As shown in Table 1, patients with CVS had shorter  duration 
of symptoms (mean: 1.4 years; 95% confidence inter-
val: 0.1–8  years; P = 0.020), worse hearing level (class D in 

Table 1 Clinical data of patients with sporadic vestibular schwannoma

CVs group (n = 31) sVs group (n = 114) P value

Mean age in years ± SD (range) 47.7 ± 13.7 (16–65) 24.1 ± 10.3 (11–77) 0.973

Male 15 (48.4%) 53 (46.5%)
1.000

Female 16 (51.6%) 61 (53.5%)

Left side 14 (45.2%) 55 (48.2%)
0.840

Right side 17 (54.8%) 59 (51.8%)

Mean tumor size (mm)a 39.7 ± 8.3 (23–55) 24.2 ± 10.3 (0–70) 0.196

Mean duration of symptoms (years) 1.4 (95% CI: 0.1–8) 2.9 (95% CI: 0.1–20) 0.020a

Progressive hearing loss 21 (67.7%) 101 (88.6%)
0.010a

Sudden hearing loss 10 (32.3%) 13 (11.4%)

Tinnitus 22 (71.0%) 87 (76.3%) 0.639

Vertigo 8 (25.8%) 38(33.3%) 0.517

Trigeminal nerve dysfunction 19 (61.3%) 64 (56.1%) 0.685

Facial nerve dysfunction

HB grade I–II 29 (93.6%) 111 (97.4%) 0.290

HB grade III–IV 1 (3.2%) 2 (1.8%) 0.517

HB grade V–VI 1 (3.2%) 1 (0.8%) 0.383

Pure tone average

Class A 0 4 (3.5%) 0.578

Class B 2 (6.5%) 15 (13.2%) 0.528

Class C 6 (19.4%) 39 (34.2%) 0.130

Class D 23 (74.2%) 56 (49.1%) 0.015a

Lower cranial nerve dysfunction 12 (38.7%) 22 (19.3%) 0.032a

Headache and vomiting 18 (58.1%) 56 (49.1%) 0.422

Papilloedema 18 (58.1%) 39 (34.2%) 0.022a

CI, confidence interval; CVS, cystic vestibular schwannoma; HB, House–Brackmann facial nerve grading system; SVS, solid vestibular schwannoma.
aP < 0.05.
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74.2%;  P  =  0.015), higher occurrence of sudden hearing loss 
(32.3%; P = 0.010), lower cranial nerve dysfunction (38.7%; P = 
0.032), and papilloedema (58.1%; P = 0.022).

NF2 mutations were not directly involved in cystic formation 
of Vs
In our mutation screening of NF2 in 145 patients with spo-
radic VSs (31 CVSs and 114 SVSs), only somatic mutations 
were detected from the tumor DNA samples. No constitutive 
mutation of NF2 was detected from the blood DNA samples. 
Single heterozygous mutations of NF2 were detected in 9 CVSs 
and 38 SVSs, whereas compound heterozygous mutations were 
detected in 1 SVS, and apparent homozygous mutations were 
detected in 2 CVSs (Supplementary Table S2 online). The 
mutation detection rate of NF2 was 34.5% (50/145) in overall 
VSs, 35.5% (11/31) in CVSs, and 34.2% (39/114) in SVSs. There 
was no significant difference of the mutation rates between 
CVSs and SVSs (Fisher’s exact test; P = 1.000). Although most 
NF2 mutations identified were truncating mutations (nonsense, 
frameshift, and splicing-site mutations), we did not observe 
any significant difference in the percentages of truncating and 
nontruncating mutations between those two groups. These 
results suggested that NF2 mutations are not directly involved 
in the cystic formation of VS.

Differential gene expression between CVs and sVs
A total of 17 representative tumors (11 CVSs and 6 SVSs; see 
clinical data in Supplementary Table S3 online) were subjected 
to differential gene expression analysis using the cDNA micro-
array method. A hierarchical cluster of significantly up- or 
downregulated probes/genes in CVSs is presented in Figure 2. 
A total of 34,690 genes were assessed per array. Of the 46 dif-
ferentially expressed genes in CVSs (Supplementary Table S4 
online), 35 (76.1%) were downregulated and 11 (23.9%) were 
upregulated. All differentially expressed genes were matched 
against the Gene Ontology Consortium database29 using the 
built-in annotation functionality. Gene annotation enrich-
ment analysis of the clustered genes revealed significant enrich-
ment of annotation for five genes in pathways of cancer (P = 
0.0000902): one in cell adhesion molecules (P = 0.0021), three 
in cytokine–cytokine receptor interaction (P = 0.0056), and one 
in extracellular matrix–receptor interaction (P = 0.0326).

qRT-PCR experiment confirmed four differentially expressed 
genes between CVs and sVs
The top five candidate genes with the highest differential 
expression (>10-fold changes and P ≤ 0.001) were chosen for 
further verification by qRT-PCR. All five genes—the chromo-
some 1 open reading frame 130 gene CLORF130, the ciliary 
neurotrophic factor gene CNTF, the fibroblast growth factor 
binding protein 2 gene FGFBP2, the collagen type IV α 3 gene 

Figure 2 Heat map of the clustered genes. Of the 46 differentially 
expressed genes in vestibular schwannoma tumor tissue, 35 were 
downregulated and 11 upregulated. The color intensities of the heat map 
indicate the degree of up- (red) or downregulation (green) in CVSs. Each 
column of colored squares represents one tissue sample. Seventeen samples 
from left to right are as follows: 11 CVSs (T114, T115, T145, T116, T134, 
T127, T137, T141, T132, T140, and T142), 6 SVSs (T125, T126, T128, T135, 
T144, and T139). CVS, cystic vestibular schwannoma; SVS, solid vestibular 
schwannoma.
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COL4A3, and the collagen type IVα 4 gene COL4A4—were 
downregulated in CVS and participate in pathways of onco-
genesis or cytokine–cytokine receptor interaction (Table 2). 
Our qRT-PCR analysis confirmed significant downregulation 
in four candidate genes, CLORF130 (fold change = −2.81; P = 
9.5 × 10−10), CNTF (fold change = −2.77; P = 5.7 × 10−5), COL4A3 
(fold change = −4.10; P = 0.017), and COL4A4 (fold change = 
−1.56; P = 0.003), whereas the remaining FGFBP2 gene showed 
borderline significance (fold change = −1.75; P = 0.062) of dif-
ferential expression (Figure 3). For three genes, C1orf130 (R2 = 
0.572; P = 0.007), CNTF (R2 = 0.529; P = 0.011), and COL4A4 
(R2 = 0.594; P = 0.005), the expression levels had strong correla-
tion between those measured by the cDNA microarray and the 
qRT-PCR (Figure 3).

DIsCUssION
Sporadic VS is an intracranial benign tumor that originates 
from Scapa ganglion of vestibular nerve in internal acoustic 
meatus. During its growth process, the tumor could oppress and 
adhere to adjacent tissues such as trigeminal nerve, facial nerve, 
vestibulo-cochlear nerve, lower cranial nerves, and brain stem, 
which evoke associated central nerve dysfunction, hydrocepha-
lus, and even encephalocele. As a crucial feature for surgery, the 
CVS usually means aggressive clinical features and worse post-
operative outcomes.10–13 The molecular mechanism underlying 
the cystic degeneration of VS, however, remains unclear.

Since NF2 mutation is the major cause of VS, we compared 
the mutation screening results of NF2 between CVSs and 
SVSs. Because we did not evaluate the loss of heterozygos-
ity of NF2, the percentage of NF2 mutations identified in our 
study was relatively low as compared with some other reports.30 
Nevertheless, our study showed that although 34.5% of spo-
radic VSs had at least one NF2 mutation, no significant differ-
ence was observed between these two groups (35.5 vs. 34.2%; P 
= 1.000). Furthermore, the proportion of mutation types (trun-
cating and nontruncating mutations) was also similar between 
them. Our finding suggested that although NF2 mutation is 
central for oncogenesis of VS, it may not directly participate in 
the cystic degeneration of VS.

To detect key genes involved in cystic degeneration in VS, we 
obtained a list of differentially expressed genes of CVS by cDNA 
microarray analysis. In contrast to a previous study in which 
no gene was reported differentially expressed between 7 CVSs 
and 18 noncystic VSs,31 we identified 46 differentially expressed 
genes in CVSs (see Supplementary Table S4 online). qRT-PCR 
analysis subsequently verified the differential expression in the 

top five candidate genes including C1orf130, CNTF, FGFBP2, 
COL4A3, and COL4A4.

The C1orf130 gene showed the highest downregulation (fold 
change = −2.81; P = 9.5 × 10−10, based on qRT-PCR results) 
in CVS. It encodes noncompact myelin-associated protein, 
which had another alias, myelin glycoprotein. As a transmem-
brane protein and a novel myelination-associated transcript, 
the myelin glycoprotein is expressed in Schwann cells and is a 
component of peripheral myelin.32 Its expression is regulated 
by early growth response 2 during development and after nerve 
injury but appears to be negligible in the brain.32 Both overex-
pression and knockdown of myelin glycoprotein could result in 
significantly less myelin formation, which may be involved in 
the biological process of cystic degeneration of VS.

The CNTF gene also manifested a high degree of downregula-
tion (fold change = −2.77; P = 5.7 × 10−5) in CVS. It encodes the 
CNTF protein, which is a polypeptide hormone whose actions 
appear to be restricted to the nervous system, where it promotes 
neurotransmitter synthesis and neurite outgrowth in certain 
neuronal populations. The CNTF protein is a potent survival 
factor for neurons and oligodendrocytes and may be involved 
in reducing tissue destruction during inflammatory attacks and 
in affecting growth and differentiation of various neoplasms.33 
Dozio et al.34 reported that it presents a similar three-dimen-
sional fold structure as class I cytokines, which participate in 
the complex control of the reproductive function by affecting 
the development and function of the hypothalamus–pituitary 
system at different ontogenic times and anatomical sites.

The COL4A3 and COL4A4 genes encode two of the six sub-
units of type IV collagen, the major structural component of 
basement membranes. Type IV collagen has been linked not 
only to specific kidney pathologies, such as the autosomal-reces-
sive form of Alport syndrome (hereditary glomerulonephropa-
thy) and familial benign hematuria (thin basement membrane 
disease), but also to tumor invasion and metastasis, including 
gastric, colorectal, ovarian, and breast cancers, as well as well-
differentiated lung carcinomas.35,36 It appears that type IV col-
lagen could control reproductive function at different onto-
genic times and anatomical sites and plays functional roles in 
cell adhesion, cell differentiation, and tissue development.37,38 In 
our study, we observed a significant downregulation of COL4A3 
(fold change = −4.10, P = 0.017) and COL4A4 (fold change = 
−1.56, P = 0.003) in CVSs, which also suggested that those two 
genes may be involved in the cystic formation of VS.

The FGFBP2 gene showed borderline significance (fold 
change = −1.75; P = 0.062) of downregulation in CVS. Its protein 

Table 2 Top five differentially expressed genes in cystic vestibular schwannoma by microarray analysis

Probe ID Gene symbol Cytoband Fold change P value Function

ILMN_3246014 C1orf130 2p13.1b −22.30 0.001 Unknown function

ILMN_1773113 CNTF 8p21.2d −16.58 0.004 Cytokine–cytokine receptor interaction

ILMN_1761945 FGFBP2 8p21.2d −13.40 0.007 Cytotoxic lymphocyte-mediated immunity

ILMN_1662731 COL4A3 4q23b −12.92 0.003 Pathways in cancer

ILMN_1778308 COL4A4 1q23.1g-q23.2a −10.43 0.001 Pathways in cancer
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is expressed in cytotoxic T lymphocytes and natural killer cells 
and may be involved in cytotoxic lymphocyte-mediated immu-
nity. Several studies found that high expression of this protein 
was positively correlated with survival in high-grade gliomas 
and histological type, clinical stage, and good prognosis in 
ovarian carcinomas.39,40

Conclusions
Our study showed that NF2 mutations may not be directly 
involved in the cystic formation of VS. In addition, a large num-
ber of genes with differential gene expression between CVSs 
and SVSs, including C1orf130, CNTF, COL4A3, and COL4A4, 
are potential candidates for this biological process and may 
warrant further investigation.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper 
at http://www.nature.com/gim
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