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Introduction
The rapidly decreasing cost of whole-genome sequencing (WGS) 
and its ability to simultaneously analyze all human genes make 
it an attractive technique for genetic diagnosis. Early anecdotal 
reports describing the use of WGS or whole-exome sequencing 
(WES) have demonstrated the power of these new technolo-
gies to impact patient care.1–3 However, there exist significant 
barriers to the widespread application of WGS/WES in clinical 
medicine. Technical hurdles are being addressed in the market-
place, where competition will lead to faster, cheaper, and more 
accurate sequencing.4 Practical obstacles such as the time and 
effort required for analysis of clinically relevant variants, and 
return of complex results to patients, will require transition 
from traditional genetic testing approaches.

In a clinical environment, the most productive use of WGS/
WES will likely be in the diagnosis of patients with distinctive 
features suggestive of a genetic disorder. In these individuals, 
there will also be genetic findings unrelated to the present-
ing symptoms, which are “incidental” or “secondary” find-
ings, the aggregate of which has previously been termed the 
“incidentalome.”5 Arguably, the vast majority of an individual’s 
genetic variants will be unrelated to the presenting symptoms. 
Therefore, the problem of how to deal with incidental findings 
poses a formidable problem for clinicians and laboratorians.

In the pursuit of evidence-based genomic medicine, it will 
be vital to avoid overwhelming patients and physicians with 

genomic findings of dubious clinical value. Because the use of 
common single-nucleotide polymorphisms for prediction of 
common disease risk is still of limited value clinically,6 we have 
chosen to focus on monogenic disorders. Given that any indi-
vidual has a very small a priori likelihood of being affected with 
an incidentally identified Mendelian disorder, few truly disease-
causing genetic variants are expected per person. Therefore, 
any attempt to sift through genomic data for clinically relevant 
incidental findings will benefit from the recognition that the 
vast majority of variants bear negligible clinical significance. 
In other words, the identification of incidental findings should 
maximize specificity.

The challenge, therefore, is to synthesize collective knowledge 
about the genetic causation of disease and implement a practi-
cal, clinically oriented approach to the analysis of genome-scale 
variant data. We recently described a conceptual strategy for clas-
sifying genes into “bins” to facilitate informed consent, analysis, 
and return of incidental findings in a clinical setting.7 In our pro-
posed system, the first step is to assign genes to bins according to 
features such as clinical utility/actionability (Bin 1) and clinical 
validity (Bin 2), and the potential to cause harm (Bin 2a, 2b, 2c; 
see Supplementary Materials and Methods online for details). 
The second step is to select the variants in a given individual that 
merit detailed review. The third step involves human review of 
the resulting subset of variants. Because a variant of uncertain 
significance (VUS), by definition, has no known clinical value, 
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only known mutations or likely disease-causing novel mutations 
would be reported as incidental findings.

Variants identified by any sequencing method can be read-
ily sorted based on their genomic location (whether they fall 
within a “binned” gene) and further annotated in terms of effect 
on the translated protein and predicted zygosity. For recessive 
disorders in which a single heterozygous mutation signifies the 
carrier state but is not considered disease causing, heterozygous 
variants would be moved into a separate category, “Bin R,” for 
reproductive implications. Our binning approach thus attempts 
to capture clinical differences between genes and organize them 
into a succinct number of categories to facilitate the pretest 
counseling and posttest reporting of suspected disease-causing 
variants when discovered incidentally during WGS/WES.

The goals of this endeavor were to evaluate the average number 
and type of potentially clinically relevant incidental findings and 
the impact of various “filters” on the output of the proposed ana-
lytic framework. We implemented a prototype of this strategy with 
an analysis of 80 whole genomes as a proof-of-concept, showing 
that multiple genomes can be efficiently analyzed to identify clini-
cally relevant variants. This strategy can be refined with advances 
in our understanding of disease-causing and benign variants and 
offers an initial means of structured clinical assessment of WGS/
WES data in a practical and efficient manner.

Subjects and Methods
Binning of OMIM genes
OMIM files (accessed June 2011) containing entries for 12,786 
genes were scrutinized using OMIM, PubMed, Gene Reviews, 
and other resources. Genes were placed into Bin 3 (no clinical 
implications) if there was no indication of association with a 
Mendelian disorder, if only somatic mutations were reported, or 
if limited evidence of pathogenicity was available. Loci mapped 
by linkage, for which specific genes/mutations have not been 
documented, were also removed from consideration. A total of 
2,016 genes associated with Mendelian disorders were identi-
fied, and their respective inheritance patterns were determined.

We made two judgments about genes involved in Mendelian 
disorders: (i) most genes do not have clinical utility/actionabil-
ity in terms of definable preventive measures or treatment and 
(ii) for most Mendelian disorders, the potential for psychoso-
cial harm caused by their incidental discovery is neither trivial 
nor highly concerning. Therefore, all 2,016 genes were initially 
placed in Bin 2b. We then manually reviewed each gene and 
applied a first-order approximation of the previously outlined 
criteria to provisionally place each gene into a bin. Genes for 
which there existed a reasonable suggestion of beneficial inter-
ventions were provisionally assigned to Bin 1. Genes having 
potentially significant risk of psychosocial harm were provi-
sionally assigned to Bin 2c.

Genome sequences
WGS was performed by Complete Genomics (Mountain View, 
CA).8 Nineteen genomes were from patients enrolled in an insti-
tutional research board–approved research study for genetic 

evaluation of hereditary cancer susceptibility. Sixty-one genomes, 
representing presumably healthy individuals from diverse ethnic 
groups, were made publically available by Complete Genomics 
(http://www.completegenomics.com/sequence-data/download-
data/). All genome coordinates are based on NCBI build 37.

Databases and computational analysis
Tables containing variant calls and annotations were stored in a 
PostgreSQL 8.4.3 database and joined with a table of allele fre-
quencies generated from phase I consensus single-nucleotide 
polymorphism sites (2 May 2011) from the 1000 Genomes 
Project and small insertion/deletion calls from the 1000 
Genomes pilot paper dataset (20 October 2010).9 To address 
differences in allele frequency (AF) between different popula-
tions, we used the highest minor AF reported for a given vari-
ant in any of the phase I population groups. A local instance of 
the Human Gene Mutation Database (HGMD)10 was created in 
another PostgreSQL database. Genomic coordinates for HGMD 
mutations were lifted over to NCBI Build 37 and converted 
to the Complete Genomics standard variant format. Variants 
matching with annotated disease mutations (“DM” variants) 
could then be readily identified in the 80 WGS samples.

A Python (2.6.5) script was written to iterate through vari-
ant files and select variants meeting the criteria outlined in 
the manuscript. Because Complete Genomics independently 
calls each allele, two separate lines in the variant file represent 
homozygous variants. The script collapses homozygous posi-
tions to a single line and indicates the zygosity of the variant in 
a separate field. For genes associated with autosomal recessive 
disorders, the script counts the number of variants meeting the 
predefined criteria and, if only one heterozygous variant exists, 
annotates that variant as signifying carrier status. The algorithm 
thus recognizes the potential for biallelic mutations (although 
it is important to note that further investigation is required to 
adjudicate whether the mutations are in cis or in trans).

Results
To demonstrate the applicability of the proposed analytic 
framework, we provisionally binned 2,016 genes implicated 
in Mendelian disorders, implemented a computational ana-
lytic pipeline, and explored the output from 80 whole-genome 
sequences. In this first attempt at binning the genome 
(Supplementary Table S1 online), 161 genes were assigned to 
Bin 1, 1,798 genes were assigned to Bin 2b, and 57 genes were 
assigned to Bin 2c. We emphasize that the binning of genes 
used in this study is provisional and used for illustrative pur-
poses; the final population of bins will change over time and the 
choices made by our group and others may well differ.

We then explored parameters (AF cut-offs and effect of 
the mutation) used to select variants for further manual 
review (Figure  1). The total number of variants selected 
(Figure 1a) is decreased 10–20 fold using AF filters of <5 or 
<1% (Figure 1b). Selecting for protein-altering variants (mis-
sense, nonsense, frameshift, and splice-site) further decreases 
this number (Figure 1c). However, the resulting numbers are 
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still incompatible with the small chance of an individual hav-
ing a Mendelian disorder; thus, the vast majority of variants 
with <5% AF must have minimal clinical consequences. When 
selecting only predicted truncating (nonsense, frameshift, and 
splice-site) variants, the number identified per patient is more 
consistent with realistic expectations (Figure 1d).

Clearly, the sensitivity of the algorithm is decreased by the 
exclusion of rare missense mutations. To address this issue, 
we queried a local instance of HGMD for variants in these 
genes annotated as “DM” and identified 871 unique vari-
ants (771 missense) among the 80 whole genome sequences. 
On average there were 74 (range 61–106) “DM” variants per 
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Figure 1 S election of variants based on allele frequency and predicted effect on the translated protein. (a) The initial informatics analysis resulted 
in an average of ~13,000 variants per person in Bin 1 genes, ~175,000 variants per person in Bin 2b genes, and ~9,000 variants per person in Bin 2c genes. 
(b) Limiting these variants to <5% allele frequency (AF) or <1% AF reduces these counts ~10–15 fold. (c) Restricting to protein-coding variants (missense, 
nonsense, frameshift, and splice-site) at <5% AF results in ~10 variants per person in Bin 1 genes and 100–200 variants per person in Bin 2b genes. At <1% 
AF there were ~5 variants per person in Bin 1 genes and 50–100 variants per person in Bin 2b genes. (d) Restricting only to truncating variants (nonsense, 
frameshift, and splice-site) results in only a small number of variants to be analyzed by the reviewer. Of note, the AF cut-off (<5 vs. <1%) does not dramatically 
affect the number of truncating variants that are selected.
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person (Figure  2a), which is strikingly similar to the report 
of the 1000 Genomes Project Consortium that individuals are 
heterozygous for 50–100 variants classified as disease causing 
in HGMD.9 Nevertheless, this large number of putatively dis-
ease-causing mutations is surprising, given the very low prob-
ability of a Mendelian disorder truly being present in any of 
the subjects.

Because 88% of the unique “DM” variants were missense sub-
stitutions, we hypothesized that these variants could comprise 
a subset of the ~150 missense variants per person identified in 
Bins 1, 2b, and 2c with <5% AF (Figure 2a). Surprisingly, there 

was minimal overlap between the less common missense vari-
ants and “DM” variants detected in the 80 genomes (Figure 2b), 
and upon further review, 251 of the 871 unique “DM” variants 
(29%) had >5% AF. As a result, 78% of “DM” variants per per-
son were >5% AF (Figure 2c). This finding is similar to that 
of a previous report that 74% of HGMD variants identified in 
448 genes implicated in severe recessive diseases of childhood 
were variants with >5% AF.11 Although some of these variants 
could represent recessive alleles that are relatively frequent in 
certain populations, this explanation cannot account for the 
vast majority of these variants.
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To further assess the pervasiveness of misleading database 
errors, we queried the 1000 Genomes Project allele frequencies 
and found allele frequencies for 1,811 of 74,694 “DM” variants 
(mostly substitution variants). Of these, 1,152 had <1% AF, 
299 had 1–3% AF, 95 had 3–5% AF, and 265 (~0.35% of all 
“DM” variants) had >5% AF (Figure 2d). The small subset of 
variants with >5% AF comprised the majority of “DM” vari-
ants identified in a given genome sequence, simply because 
of the prevalence of these variants in the general population; 
in subsequent analyses we restricted HGMD variants to those 
with <5% AF.

The final algorithm selected variants according to the fol-
lowing criteria: (i) presence in a binned gene, (ii) <5% AF, and 
either (iii) annotation as a disease-causing mutation (“DM”) in 
HGMD or (iv) predicted to be truncating. Variants were fur-
ther analyzed for zygosity to assign single heterozygous variants 
in recessive genes to a separate category for carrier status (Bin 
R). When we applied this algorithm to the 80 genomes, a total 
of 1,391 variants (906 unique variants) were selected. The per-
person averages were 1.5 variants in Bin 1 genes, 6.4 variants in 
Bin 2b genes, 0.2 variants in Bin 2c genes, and 9.2 variants con-
sidered to imply carrier status for recessive disorders (Table 1 
and Supplementary Table S2 online).

The variants selected by the algorithm were then manually 
reviewed using a combination of OMIM, PubMed, Google 
Scholar, UCSC genome browser, and locus-specific databases 
to assess the evidence for pathogenicity or to reclassify the 
variants selected from the 80 genomes. Variants were reclassi-
fied if two variants identified in an individual likely comprised 
a single complex substitution allele or comprised a single com-
mon haplotype. In many cases, variants annotated as “DM” in 
HGMD were reclassified as VUS or likely polymorphisms. In 
other cases, the type of variant or its location within a specific 
transcript was inconsistent with a pathogenic effect. Zygosity 
was reassessed when it was determined that two variants were 
likely to be in cis or that only one of the selected variants in a 
gene was likely to be pathogenic; in these cases, the remaining 
heterozygous variant was reassigned to Bin R. Table 2 shows 
examples of binned variants, reclassified variants, and vari-
ants removed from consideration. Several detailed examples 
are described in the Supplementary Materials online. A list 
of binned variants from the 61 publically available genomes is 
available in Supplementary Table S3 online.

After review, 705 variants were removed from consideration 
and 71 were reassigned to carrier status. Differing percentages 
of variants were reclassified or removed from consideration in 
each bin category (Figure 3a) and lower proportions of novel 
variants were removed (Figure 3b) as compared with HGMD 
“DM” variants (Figure 3c). In all, 279 of the 358 unique vari-
ants removed from consideration were HGMD “DM” variants. 
After the final analysis, the revised per-person averages were 
0.3 variants in Bin 1 genes, 2.6 variants in Bin 2b genes, 0.06 
variants in Bin 2c genes, and 5.5 variants considered to imply 
carrier status (Table 1 and Supplementary Table S2 online).

Discussion
One barrier to the clinical use of WGS/WES is the legitimate 
concern that the burden of incidental findings will be over-
whelming and lead to expensive and unnecessary follow-up 
despite little evidence that such variants have a strong role in 
causing disease.5,12 The approach we describe here demon-
strates that analysis of WGS/WES data for clinically significant 
incidental variants is a tractable problem and that manageable 
numbers of variants can be selected for manual review.

Predictive value of variants identified in an incidental 
context
These results indicate that a small number of potentially 
disease-causing variants can be readily identified using a rela-
tively straightforward process consisting of a priori gene classi-
fication, computational filtering, and database queries. As with 
any medical test, the analytic parameters used in this approach 
represent a trade-off between sensitivity and specificity. The 
choices outlined in our strategy reflect the impact of sensitiv-
ity and specificity on the calculation of the negative predictive 
value and positive predictive value. When the prior probability 
of disease is very low (e.g., the chance of having a Mendelian 
disorder that would be discovered incidentally), a test with 
reduced specificity will yield results with poor positive predic-
tive value, whereas reduced sensitivity has negligible effect on 
the negative predictive value. We have therefore chosen to set 
a threshold that emphasizes specificity, in order to enrich for 
incidental findings that have a high likelihood of representing 
truly disease-causing mutations.

Because selection of rare missense variants in known disease 
genes results in a large number of VUSs, which provide no 

Table 1 Numbers of variants selected by the informatics algorithm

 Bin 1 Bin 2b Bin 2c Bin R

Total variants per person 13,129.7 (10,268–15,993) 174,576.7 (144,371–212,760) 9,251.6 (7,472–11,663) ND

<5% AF 1,219.8 (732–2532) 16,362.1 (10,845–31,861) 915.5 (551–2,053) ND

<5% AF and either “DM” in HGMD or 
predicted truncating

3.0 (0–9) 14.2 (5–26) 0.45 (0–3) ND

<5% AF and either “DM” in HGMD or 
predicted truncating, analyzed for zygosity

1.5 (0–5) 6.5 (2–14) 0.2 (0–2) 9.2 (0–17)

Revised after manual review 0.3 (0–2) 2.6 (0–8) 0.06 (0–1) 5.5 (0–12)

AF, allele frequency; DM, disease mutation; HGMD, Human Gene Mutation Database; ND, not done.
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“actionable intelligence” for a clinician or patient, we excluded 
missense variants unless annotated as “DM” in HGMD. Various 
algorithms are used in research to predict the likely functional 
consequences of missense variants,13 but these programs are 
not clinically validated14 and in the absence of other support-
ing data they are generally insufficient to upgrade the status of 
a missense variant from VUS to likely pathogenic.15 The pro-
posed framework also excludes synonymous variants as well 
as variants in the untranslated portions of the transcript and 
introns, which are most likely benign but might alter expression 
of the transcript or cause splicing abnormalities. Although the 
exclusion of novel missense, synonymous, and noncoding vari-
ants decreases the sensitivity of the approach, the lack of any 
clinically validated means of selecting the true-positive muta-
tions from among the numerous variants of unknown (or no) 
clinical significance requires that we sacrifice some sensitivity 
to maintain high specificity. Inclusion of the HGMD substan-
tially increased the sensitivity of the algorithm, but misanno-
tated HGMD “DM” variants (which could represent errors in 
the medical literature or database curation errors) still consti-
tuted a major source of false-positive results.

Because there is no gold standard against which to compare 
our results, we cannot definitively estimate the clinical sensitiv-
ity or specificity of this analytic framework. However, even after 
manual inspection, the numbers of variants selected per per-
son (Table 1) indicate that a number of false positives remain. 
Some of the putative mutations identified in these 80 genomes 
could reflect sequencing artifacts, which would be revealed by 
follow-up Sanger sequencing. Many of the “DM” mutations 
remaining after manual curation may still represent VUSs or 
the milder end of the genotype–phenotype spectrum for a given 
disease. Perhaps more intriguingly, these findings could indicate 
a much greater degree of clinical variability and incomplete pen-
etrance than has previously been appreciated in Mendelian dis-
orders, which could dramatically impact the logistics of return 
of such information clinically. We anticipate that improvements 
in both clinical databases and predictive algorithms will allow us 
to further improve sensitivity and specificity over time.

Comparison to other reports
The average numbers of potentially clinically important vari-
ants identified in this article differ substantially from those of 
previous efforts to quantify the burden of clinically important 
incidental findings, and we feel that it represents a more realistic 
picture of what to expect from WGS in terms of clinical yield. 
These differences hinge largely on the assumptions made about 
disease causation and the framework we have chosen for iden-
tification of potentially clinically relevant variants. For example, 
whereas other groups have been inclined to report1 and/or inter-
pret the possible clinical significance2 of variants that may mod-
ify risks for common diseases, we intentionally ignored common 
single-nucleotide polymorphisms that are weakly associated 
with multifactorial diseases. This decision is based on the lack 
of validated models for incorporating such information into 
medical care6 and the inconsistent interpretive results obtained  
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in different labs,16 although the framework described here could 
be readily modified to include multifactorial risk calculations 
if warranted by advances in medical genetics and genomics. 
Pharmacogenomic variants can also be accommodated in the 
binning framework but were not considered here.

Cassa et al.17 estimated that individuals harbor ~2,100 sub-
stitution variants that might need to be returned to research 
subjects, which is four orders of magnitude higher than the 
0–2 likely deleterious Bin 1 variants per person identified in 
this study. Possible explanations for this striking difference are 
the stringency with which genes are categorized as having clin-
ical utility, and the thresholds for reporting variants. We argue 
that a relatively high evidentiary standard should be applied in 
order for a gene to be placed in Bin 1, such that the expected 
benefits gained by improved medical management would out-
weigh the possible harms that could arise from the revelation 
of such a finding in an incidental context. Using these criteria, 
most known disease genes are placed in Bin 2, in which patient 
choice is paramount in determining whether such incidental 
findings should be returned. In addition, we believe that only 
variants that are known to be pathogenic or highly likely to 
be pathogenic should be returned in an incidental context. 
The vast majority (~96%) of variants included in the Cassa et 
al.17 study originated from the HGMD, and our current data 
demonstrate that many of these variants are likely to represent 
false positives. It is difficult to discern how many of the ~2100 
substitution variants per person reported by Cassa et al.17 are 
actually benign common polymorphisms, although approxi-
mately one-third of these variants were homozygous (suggest-
ing a general population AF substantially >5%), indicating that 
the putative “reportable” variants identified by Cassa et al.17 
include many variants that are not deleterious and should not 
be reported either in a research context or a clinical context.

MacArthur et al.18 reported a survey of loss-of-function vari-
ants in the 1000 Genomes Project data and identified many 
challenges of interpreting WGS/WES data with respect to gen-
erating annotations and predicting the effects of possibly trun-
cating variants. A number of known and likely disease-causing 

loss-of-function mutations were identified among the subjects 
analyzed, most of which would represent carrier status for auto-
somal recessive disorders. Again, however, these results point 
out the difficulty of predicting pathogenicity of a given variant 
and the importance of review by a clinical molecular diagnosti-
cian. Similar to our results, one putative disease-causing muta-
tion listed among the loss-of-function variants by MacArthur 
et al.18 was a nonsense mutation in LRRK2, which is of uncer-
tain clinical significance because the reported mutations in 
LRRK2-related autosomal dominant Parkinson’s disease are 
missense substitutions.19

Challenges and future directions
The bin assignments described here should be viewed as a first 
step in the development of the binning process. The central con-
cept of Bin 1 is that these findings have sufficient clinical action-
ability that no preference would be elicited regarding their return 
(in effect, the “duty to warn” would supersede the patient’s auton-
omy). This denial of the patient’s “right not to know” requires 
us to set a very high threshold regarding the types of findings 
that are appropriate for this category. On the other hand, our 
strategy places the majority of disease genes within Bin 2, where 
the potential risk for harm is the organizing principle, and the 
concept of individual preference is paramount. Thus, we feel 
that our strategy strikes a balance regarding patient choice 
and medical paternalism. A possible future addition might be 
to subcategorize Bin 2b into disease groups (such as cancer, 
cardiovascular/sudden death, neurodegenerative, and “other” 
Mendelian disorders) that would allow a more refined choice 
in a clinical context. Of course, the disadvantage of introducing 
more and more categories is that the clinical decision making 
could devolve into a gene-by-gene menu, which would impose 
prohibitive demands on clinicians and laboratories with respect 
to informed consent and analysis.

This provisional binning of genes is not meant to represent a 
final or definitive list, and we expect that there will be disagree-
ment among experts about the criteria that define Bin 1 or Bin 
2 genes, or the types of incidental findings that should routinely 

1.0

0.8

0.6

0.4

0.2

Bin 1
(n = 76)

Bin 2b
(n = 356)

Bin 2c
(n = 19)

All variantsa b cNovel variants HGMD “DM” variants

Carrier
(n = 455)

1.0

0.8

0.6

0.4

0.2

Bin 1
(n = 15)

Bin 2b
(n = 157)

Bin 2c
(n = 12)

Carrier
(n = 208)

1.0
Same bin
Different bin
Carrier
Removed

0.8

0.6

0.4

0.2

Bin 1
(n = 61)

Bin 2b
(n = 199)

Bin 2c
(n = 7)

Carrier
(n = 247)

Figure 3 R esults of the manual review of variants selected by the informatics algorithm. After individual review of the 906 unique variants 
returned by the final informatics algorithm, 45% were reassigned or removed from consideration. The graphs depict the variants initially selected within 
a given “bin” and the stacked segments represent the proportions of those variants that were confirmed, reassigned, or removed after review. (a) All 
906 unique variants, (b) the 392 rare truncating variants identified by the algorithm, and (c) the 514 rare “DM” (disease mutation) variants from the 
Human Gene Mutation Database (HGMD). A higher proportion of “DM” variants in each bin category were removed from consideration as compared 
with novel truncating variants.
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be returned to patients (and how they should be returned) dur-
ing the course of a genome-scale diagnostic test.20 Furthermore, 
there may be differences of opinion regarding the classes of 
variants that should be reported to patients when discovered 
incidentally. Our evolving understanding of the genetic under-
pinnings of disease will necessitate a flexible approach to the 
structured clinical analysis of genome sequences, and an impor-
tant future direction will be to establish more granular criteria 
for determining the novel variants that are selected for review 
based on the reported spectrum of disease-causing mutations. 
It is likely that the large numbers of genomes currently being 
sequenced worldwide will greatly facilitate the clinical interpre-
tation of variants that are found in known disease genes. Better 
estimates of penetrance will inform the contexts in which certain 
variants are reported, and many variants previously reported as 
disease-causing may need to be carefully scrutinized to separate 
those that are truly deleterious from those that simply reflect 
normal population variation. Therefore, the value of a central-
ized and rigorously maintained clinical-grade database contain-
ing known variants and their significance cannot be overstated.

Conclusion
These results represent a proof-of-concept demonstration of a 
structured clinical analysis of incidental findings in genome-
scale sequence data that can serve as a general model for assess-
ment of WGS/WES incidental findings. This framework makes 
the identification clinically relevant incidental findings much 
more tractable, as it reduces the number of variants requiring 
hand curation to a manageable number (10–20), and it should 
prove robust to differing bin structures or gene assignments. We 
expect that consensus will be possible regarding the bin assign-
ment of many genes,20 and we note that as of this publication 
there are ongoing discussions and debate among genetics pro-
fessionals regarding these issues. Advances in medical genetics 
will also mandate a periodic re-evaluation of these bin assign-
ments. Nevertheless, we anticipate that assignment of genes to 
bins based on clinical utility and stratified based on the risk of 
psychosocial harm will enable efficient analysis of data as well 
as facilitate pretest informed consent, posttest counseling, and 
return of results as we enter the era of clinical genomics. Further 
research on the implementation of this analytic framework and 
the responses of individuals to incidental findings is under way.

Supplementary material
Supplementary material is linked to the online version of the paper 
at http://www.nature.com/gim
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