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Purpose: Commercial internet-based companies offer genome-wide
scans to predict the risk of common diseases and personalize nutrition
and lifestyle recommendations. These risk estimates are updated with
every new gene discovery. Methods: To assess the benefits of updating
risk information in commercial genome-wide scans, we compared type
2 diabetes risk predictions based on TCF7L2 alone, 18 polymorphisms
alone, and 18 polymorphisms plus age, sex, and body mass index.
Analyses were performed using data from the Rotterdam study, a
prospective, population-based study among individuals aged 55 years
and older. Data were available from 5297 participants. Results: The
actual prevalence of type 2 diabetes in the study population was 20%.
Predicted risks were below average for carriers of the TCF7L2 CC
genotype (predicted risk 17.6%) and above average for the CT and TT
genotypes (20.8% and 28.0%). Adding the other 17 polymorphisms
caused 34% of participants to be reclassified (i.e., switched between
below and above average): 24% of the CC carriers changed to increased
risk, 52% and 6% of the CT and TT carriers changed to decreased risk.
Including information on age, sex, and body mass index caused 29% to
change categories (27%, 31%, and 19% for CC, CT, and TT carriers,
respectively). In total, 39% of participants changed categories once
when risk factors were updated, and 11% changed twice, i.e., back to
their initial risk category. Conclusion: Updating risk factors may pro-
duce contradictory information about an individual’s risk status over
time, which is undesirable if lifestyle and nutritional recommendations
vary accordingly. Genet Med 2009:11(8):588–594.
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The accelerating rate of genomic discoveries is rapidly in-
creasing our understanding of the genetic basis of common

diseases. Recent genome-wide association studies have identi-
fied novel susceptibility variants for type 2 diabetes, age-related
macular degeneration, cancer, and many other common dise-
ases.1 These discoveries have fueled expectations about appli-
cations of predictive genetic tests in preventive and clinical
health care.2,3 It is envisioned that genetic tests will personalize
medicine through targeted treatment for patients with common
diseases and individualized lifestyle and dietary recommenda-
tions for high-risk individuals.4,5

Although genome-based clinical and public health applica-
tions still await empirical evidence, several companies already
offer online genetic tests to predict an individual’s risk of
common diseases.6 These tests are based on single susceptibility
genes (e.g., DNA direct7); based on genetic profiles using a
limited number of variants (e.g., Sciona8 and Genovations9), or
genome-wide scans (e.g., 23andMe,10 Navigenics,11 and de-
CODEme12); and based on whole genome sequencing (e.g.,
Knome13). It is widely acknowledged that testing single suscep-
tibility genes is uninformative for predicting common diseases
as, on their own, they only minimally affect disease risk14–16

and most currently offered profiles based on a few selected
variants are uninformative as they lack a firm scientific basis for
the polymorphisms included.6

Companies that offer genome-wide scans take a more rigor-
ous approach in the selection of the variants, but the clinical
validity and utility of their results may also be limited at present,
as susceptibility genes for common diseases are still being
discovered. Because of this, risk predictions from genome-wide
scans frequently become outdated when scientific knowledge
progresses. Therefore, commercial companies offer updates of
the risk predictions when new susceptibility genes are discov-
ered. Given that single new variants only have a minor contri-
bution to disease risk, we might expect that risk predictions
change minimally at each update. However, as many individu-
als will have disease risks that are only slightly higher or lower
than average,17 even minor updates may reclassify people from
below to above average disease risk or vice versa, and lifestyle
and nutrition recommendations may vary accordingly.

We investigated the extent to which updating of risk predictions
leads to reclassification of individuals from below to above average
disease risk or vice versa. Taking type 2 diabetes as an example, we
compared risk predictions based on a single gene, on multiple
polymorphisms and on multiple polymorphisms combined with
age, sex, and body mass index (BMI). Analyses were performed
using data from the Rotterdam Study, a population-based cohort of
individuals aged 55 years and older.

MATERIALS AND METHODS

Subjects
The design and data collection of the Rotterdam Study was

been described elsewhere.18 In short, the Rotterdam Study is a
prospective, population-based, cohort study among 7983 inhab-
itants of a Rotterdam suburb, designed to investigate determi-
nants of chronic diseases. Participants were aged 55 years and
older. Baseline examinations took place from 1990 until 1993,
and follow-up examinations were performed in 1993–1994,
1997–1999, and 2002–2004. Among these examinations, con-
tinuous surveillance on major disease outcomes was conducted.
The medical ethics committee of the Erasmus Medical Center
approved the study protocol, and all participants gave their
written informed consent.

From the Departments of 1Epidemiology, and 2Internal Medicine, Erasmus
MC, University Medical Center, Rotterdam, The Netherlands.

A. Cecile J. W. Janssens, PhD, Department of Epidemiology, Erasmus MC,
University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Neth-
erlands. E-mail: a.janssens@erasmusmc.nl.

Disclosure: The authors declare no conflict of interest.

Submitted for publication February 10, 2009.

Accepted for publication May 13, 2009.

Published online ahead of print July 25, 2009.

DOI: 10.1097/GIM.0b013e3181b13a4f

ARTICLE

588 Genetics IN Medicine • Volume 11, Number 8, August 2009



Data collection
The following polymorphisms19 were genotyped: TCF7L2

rs7903146 (MIM 602228), CDKAL1 rs7754840 (MIM
611259), CDKN2A/B rs10811661 (MIM 600160, MIM
600431), FTO rs8050136 (MIM 610966), HHEX rs1111875
(MIM 604420), IGF2BP2 rs4402960 (MIM 608289),
KCNJ11 rs5219 (MIM 600937), PPARG rs1801282 (MIM
601487), SLC30A8 rs13266634 (MIM 611145), ADAMTS9
rs4411878 (MIM 605421), CDC123-CAMK1D rs11257622
(MIM 607957), CDKN2A/B rs1412829, JAZF1 rs1635852
(MIM 606246), NOTCH2 rs1493694 (MIM 600275), TCF2
rs4430796 (MIM 189907), THADA rs7578597 (MIM
611800), TSPAN8-LGR5 rs1353362 (MIM 600769, MIM
606667), and WFS1 rs10012946 (MIM 606201).20–24 Details
on genotyping techniques, genotype success and odds ratios
for the genotyped variants have been published elsewhere.25

At baseline, diagnostic criteria for prevalent cases of diabetes
were a nonfasting or a postload glucose level (after oral glucose
tolerance testing) �11.1 mmol/L and/or treatment with antidi-
abetic medication (oral medication or insulin) with a diagnosis
of diabetes recorded by a general practitioner. During follow-
up, incident cases of diabetes were diagnosed at fasting plasma
glucose levels �7.0 mmol/L, and/or nonfasting plasma glucose
levels �11.1 mmol/L, and/or treatment with antidiabetic med-
ication (oral medication or insulin26,27), with a diagnosis of
diabetes recorded by a general practitioner. Patients with a
recorded diagnosis of type 1 diabetes were excluded from the
present analyses (n � 15). BMI was calculated as weight (kg)
divided by height (m) squared. Age and BMI were obtained
from the baseline assessment.

Statistical analyses
Predicted risks were obtained using logistic regression anal-

yses with type 2 diabetes (prevalent and incident cases) as the
dependent variable. All polymorphisms were entered as cate-
gorical variables in the analyses, allowing effect sizes to differ
between heterozygous and homozygous carriers of the risk
alleles. To evaluate how risk predictions change after adding
more information, we compared first risk predictions based on
the strongest genetic predictor of type 2 diabetes, TCF7L2,
alone, 18 polymorphisms including TCF7L2, and 18 polymor-
phisms plus age, sex, and BMI. Second, we compared risk
predictions based on clinical factors, clinical factors and
TCF7L2, and clinical factors plus all 18 polymorphisms. Pre-
dicted risks from the three models were evaluated by comparing
risk distributions and discriminative accuracy and by examining
reclassification. To evaluate how risk predictions change when
each polymorphism is added individually, we simulated 1000
random permutations of all possible orderings of the added
polymorphisms. Discriminative accuracy, measured as the area
under the receiver operating characteristic curve (AUC), indi-
cates the degree to which the predicted risks can discriminate
between individuals who will develop the disease and those
who will not. AUC can range from 0.50 (equal to tossing a coin)
to 1.00 (perfect discrimination). Reclassification was calculated
as the percentage of individuals who switched from being at
increased to being at decreased risk, when compared with the
average risk in the population or vice versa.28 Reclassification
was assessed in individuals with complete genotype and clinical
information. Analyses were performed using the SPSS software
version 15.0.1 and R programming language version 2.8.0.

RESULTS

General characteristics
A total of 6544 participants were successfully genotyped

for at least one polymorphism. Complete genotype informa-
tion on all polymorphisms was available from 5297 partici-
pants, of whom 490 were incident and 545 were prevalent
cases of type 2 diabetes (i.e., 20% had type 2 diabetes). Of
those with complete genotype information, 41% were men,
mean age was 69.5 years (standard deviation 9.1 years), and
mean BMI was 26.3 kg/m2 (standard deviation 3.7 kg/m2).
Complete information on genotype, age, sex, and BMI was
available from 5111 participants. The average risk of type 2
diabetes in the population was defined as the actual preva-
lence (i.e., 20%).

Improving risk prediction at population level
Prediction based on the 18 polymorphisms and clinical char-

acteristics yielded more differentiation in predicted risks than
prediction based on one or multiple polymorphisms alone (Fig.
1), which means that adding more risk factors yielded more
extreme risk predictions. For example, the 5% of the population
indicated to be at highest risk had a predicted risk of 28.0%
based on TCF7L2 but predicted risks of at least 29.7% based on
the 18 polymorphisms and at least 36.8% based on the poly-
morphisms plus clinical factors. This increased differentiation is
also reflected in higher AUCs. The AUC was 0.55 (95% CI:
0.53–0.57) for prediction based on TCF7L2, 0.60 (95% CI:
0.58–0.62) for prediction based on 18 polymorphisms, and 0.66
(95% CI: 0.64–0.68) for prediction based on 18 polymorphisms
plus age, sex, and BMI. At the average risk, the main improve-
ment in model performance was reflected in the increase in
specificity. The specificity was 51.8% for prediction based on
TCF7L2, 62.7% for prediction based on 18 polymorphisms, and
64.5% for prediction based on 18 polymorphisms plus age, sex,
BMI (Table 1).

Reclassification
Predicted risks were lower than average for carriers of the

TCF7L2 CC genotype (predicted risk 17.6%) and higher than
average for the CT and TT genotypes (20.8% and 28.0%,
respectively; Fig. 2). As indicated by the larger standard devi-
ations predicted risks diverged after adding novel risk factors,
leading to reclassification. Based on testing the 18 polymor-
phisms, 33.5% of the participants were reclassified: 23.6% of
noncarriers switched to the increased risk category and 43.6%
of the heterozygous and homozygous carriers (51.6% and 5.6%,
respectively) switched to the decreased risk category (Table 2).
Based on all polymorphisms, age, sex, and BMI, 28.5% of
participants switched their risk category compared with predic-
tion based on the 18 polymorphisms alone; the proportion of
switchers was 26.5%, 31.4%, and 19.1% for carriers of the CC,
CT and TT genotypes, respectively (data not shown). Overall,
predicted risks changed from above to below average or vice
versa in 50% of all individuals: 39% switched once and 11%
switched twice, i.e., back to their initial risk category (Fig. 3).

Updating a model starting from age, sex, and BMI
The AUC was 0.63 (95% CI: 0.61–0.65) for prediction based

on age, sex, and BMI, 0.64 (95% CI: 0.62–0.66) for prediction
based on age, sex, BMI, and TCF7L2, and 0.66 (95% CI:
0.64–0.68) for prediction based on age, sex, and BMI plus 18
polymorphisms. Starting from predictive testing based on age,
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sex, and BMI, 13.2% of participants were reclassified after
updating by TCF7L2. Based on age, sex, BMI, and all
polymorphisms, 16.3% of participants switched their risk
category compared with prediction based on age, sex, BMI,

and TCF7L2. Overall, predicted risks changed from above to
below average or vice versa in 25.6% of all individuals:
21.7% switched once and 3.9% switched twice, i.e., back to
their initial risk category.

Fig. 1. Predictiveness curves42 for TCF7L2 alone, 18 polymorphisms alone, and 18 polymorphisms plus age, sex and
body mass index. Predicted risks were obtained using logistic regression analyses. Cumulative percentage indicates the
percentage of the population that has a predicted disease risk equal or lower than the risk value. For example, based on
genetic testing of 18 polymorphisms, 90% (x-axis) of the individuals have a predicted risk lower than 26.8% (y-axis). a,
the predictiveness curves for all participants, (b) for participants without type 2 diabetes, and (c) for participants with type
2 diabetes. BMI, body mass index (calculated as weight �kg� divided by height �m� squared).

Table 1 Measures of model performance for dichotomizing predicted risk at average risk

Model based
on TCF7L2 (%)

Model based on 18
polymorphisms (%)

Model based on 18 polymorphisms, age,
sex, and body mass index (%)

Sensitivity 55.7 50.8 57.2

Specificity 51.8 62.7 64.5

PPV 21.8 24.7 28.0

NPV 82.9 84.1 86.2

Measurements are based on individuals with complete genotype and clinical information.
PPV, positive predictive value; NPV, negative predictive value.
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Updating by adding each polymorphism individually
Finally, we considered risk updating by each additional poly-

morphism individually to the model that was based on testing
TCF7L2 alone, up to the model based on all 18 polymorphisms.
Using 1000 random orderings in which the 17 polymorphisms
can be added to the profile, we calculated that on average 47%
(standard deviation 1.2%) of the participants ultimately
switched at least once when risks were updated after every
single polymorphism (Fig. 4). Seventeen percent switched once,
and 30% switched multiple times (range 2–15) from below to
above average disease risk or vice versa. When TCF7L2 was
also added in a random order, on an average, 71% (standard
deviation 8.3%) of the participants switched at least once (data
not shown).

DISCUSSION

Using type 2 diabetes as an example, we showed that updat-
ing risk predictions by including more polymorphisms, age, sex,
and BMI improved risk prediction at the population level as
reflected in the higher AUC values. However, at the individual
level, we found that 34% of the participants switched between
risk categories when risks were updated from 1 to 18 polymor-
phisms and that 29% switched when age, sex, and BMI were
taken into consideration. In total, 39% of the participants
switched risk categories once and 11% switched twice.

Before interpreting the public health relevance of these re-
sults, two methodological issues of our study, that may affect
the degree of reclassification, should be pointed out. First,
although we investigated 18 established type 2 diabetes poly-
morphisms, only about half were statistically significantly as-
sociated with type 2 diabetes risk in our population.25 This is in
line with other studies that investigated the combined predictive
value of the 18 polymorphisms, which also found that not all
polymorphisms were statistically significantly associated with

the disease.29–32 If the effect sizes of all polymorphisms in our
study had been the same as in the original studies that had
identified their associations, we would have observed a larger
variation in predicted risks (Fig. 2) and likely also more reclas-
sification.

Second, we focused on changes in risk prediction based on
TCF7L2 with that based on 18 polymorphisms, age, sex, and
BMI, which reflects the practice of commercial companies.
However, in clinical settings, it is more logical to update a
model based on recognized clinical risk factors. We showed that
when risks were updated from age, sex, and BMI to age, sex,
BMI, and TCF7L2, and further to age, sex, BMI, and all 18
polymorphisms, 22% of individuals switched risk categories
once, and 4% twice.

We compared risk prediction based on TCF7L2 with that
based on 18 polymorphisms, age, sex, and BMI, but we con-
sidered only two risk updates: one based on adding 17 poly-
morphisms and one on adding age, sex, and BMI. The percent-
age of reclassification was even higher when we considered risk
updating by each additional polymorphism individually, as is
done by the companies. The exact percentage of reclassification
then varies with the order in which polymorphisms are added,
and for 1000 random orderings of the 17 polymorphisms, we
calculated that 47% of the participants would have switched at
least once when risks were updated after every single polymor-
phism, when compared with 34% of the participants when the
17 polymorphisms were added in a single update.

The reason why people switch between risk categories is that
the added polymorphisms may have different effects on disease
risk compared with the polymorphisms already considered.
Figure 2 showed that individuals who are at increased risk
according to their TCF7L2 genotype may be at decreased risk of
type 2 diabetes, when all 18 polymorphisms are considered if
they inherited protective genotypes on many other polymor-
phisms. In our analyses, the risk increase conferred by TCF7L2
risk alleles was counterbalanced by protective effects of other
alleles in 6% of the individuals and was counterbalanced by
young age, male sex, and normal BMI in 19% of the individ-
uals.

Our final prediction model included 18 polymorphisms, age,
sex, and BMI, but it is important to realize that risk predictions
can be further improved. Even with our current understanding
of genomic factors, prediction of type 2 diabetes risk can be
improved by also considering family history and fasting plasma
glucose levels,32 factors that are currently not considered by the
companies that offer genome-wide scans. In the future, risk
prediction may be improved by the addition of novel genetic
factors, novel biomarkers, and with gene-gene and gene-envi-
ronment interactions if these are demonstrated in future genetic
epidemiologic studies.33,34 Thus, the risk predictions presented
in this article are not final and individuals may be subject to
further reclassification as science advances.

Commercial companies assert that genome-wide scans will
help consumers to learn their likelihood of developing a disease,
but it is widely agreed that risk predictions and results from
genetic tests are difficult for the lay public to understand.35,36 To
facilitate the interpretation of risk estimates, companies present
the predicted risks together with the average risk of the disease
for the total population or for a sex- and age-matched popula-
tion. Individuals can thereby learn whether they are at higher or
lower risk than others and, based on this information, may
decide to make lifestyle and dietary changes. However, indi-
viduals differ in the way they value the information gained from
genetic testing. Some may find a slight increase in predicted risk
sufficiently motivating to adopt or maintain healthy behaviors,

Fig. 2. Predicted risk of type 2 diabetes based on TCF7L2
alone, 18 polymorphisms alone, and 18 polymorphisms
plus age, sex, and body mass index. Predicted risks were
obtained using logistic regression analyses. The bold line
shows the median, the boxes indicate the interquartile
ranges (25–75% range), and the whiskers present 1.5
times the interquartile range. The points represent outliers,
and the asterisks represent extreme outliers that have val-
ues more than three times the interquartile range. BMI,
body mass index (calculated as weight �kg� divided by
height �m� squared).
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whereas others may not even change their behavior when they
learn that their risk is markedly increased. A systematic review
of the psychological and behavioral impact of genetic testing for
hereditary nonpolyposis carcinoma, hereditary breast, and ovar-
ian cancer, and Alzheimer disease reported that, generally, 12
months after testing, perceived risk in carriers decreased to the
pretest level or even below it.37 A study on the harms and
benefits of APOE genotyping in first-degree relatives of patients
with Alzheimer disease reported that disclosure of genotype

status increased the motivation for risk reduction activities.38

Note that previous studies mainly addressed psychological and
behavioral impact of genetic testing for monogenic and major
gene disorders, and these findings cannot be directly translated
to the impact of low-risk susceptibility genetic testing.

If individuals are informed that they have switched catego-
ries from above to below average risk of disease, or vice versa,
their perceptions about the need for health behavior changes
may vary accordingly. In current commercial genome scans,

Table 2 Risk stratification table for the pairwise comparison of two consecutively updated prediction models

Model based on TCF7L2

Model based on 18 polymorphisms

Total

Model based on 18 polymorphisms,
age, sex, and body mass index

TotalBelow average Above average Below average Above average

Below average

n (%) 1966 (76.4) 607 (23.6) 2573 (100) 2366 (77) 706 (23) 3072 (100)

Percentage of total 38.5 11.9 50.4 46.3 13.8 60.1

Cases, n 298 141 439 303 185 488

Observed risk (%) 15.2 23.2 17.1 12.8 26.2 15.9

Above average

n (%) 1106 (43.6) 1432 (56.4) 2538 (100) 717 (35.2) 1322 (64.8) 2039 (100)

Percentage of total 21.6 28.0 49.6 14.7 25.9 39.9

Cases, n 190 363 553 122 382 504

Observed risk 17.2 25.3 21.8 17.0 28.9 24.7

Total

n (%) 3072 (60.1) 2039 (39.9) 5111 (100) 3083 (60.3) 2028 (39.7) 5111 (100)

Percentage of total 60.1 39.9 100 60.3 39.7 100

Cases, n 488 504 992 425 567 992

Observed risk (%) 15.9 24.7 19.4 13.8 28.0 19.4

Reclassification was calculated in participants for whom all data were available to avoid part of the reclassification being caused by differences in the average risk rather
than differences in predicted risks.

Fig. 3. Patterns of reclassification that result from updating risk predictions. The number of reclassifications represents
how many times a person switched between risk categories based on the three prediction models. For example, a person
did not reclassify (reclassification is 0) if they had above average or below average risks according to all three models. A
person reclassified once (reclassification is 1) if they switched risk categories from the model based on TCF7L2 to the model
based on 18 polymorphisms or from the model based on 18 polymorphisms to the model including clinical factors. The
table explains what percentage of people reclassifies 0, 1, or 2 times, overall and by TCF7L2 genotype. BMI, body mass
index (calculated as weight �kg� divided by height �m� squared).
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risks are updated on every new gene discovery and individuals
may frequently reclassify over time. To date, it is unknown how
individuals respond to variations in risk predictions over time
and how it affects their perceptions about the threat of being at
increased risk.39–41 Because health behavior changes are diffi-
cult to achieve, we might expect that individuals will become
insensitive to risk information if they learn that their risk status
may change over time, even without any lifestyle changes. Also,
reclassification primarily focuses on changes in risk compared
with the average risk and less on the absolute risks of disease.
The absolute risk should be important as well in decision
making about healthy behavior, and it is of interest to find out
whether absolute or comparative risk information influences
health behavior change. Such potentially adverse consequences
of updating risk predictions warrant further investigation.

The companies that offer genome-wide scans or whole ge-
nome sequencing for the prediction of multiple diseases take a
higher scientific standard for the selection of susceptibility
variants than those previously reviewed.6 They include only
variants that have been consistently associated in multiple stud-
ies, and transparently present the polymorphisms that constitute
genetic profiles for each disease, including references to scien-
tific studies demonstrating their impact on disease risk. Never-
theless, with scientific advance their risk predictions may
further improve, as causation of disease is better understood,
and the benefit of these updates at the individual level are
unclear. This does not imply that the introduction of genome-
based applications in health care should wait until we com-
pletely understand the etiology of diseases, but we need to
recognize that a premature introduction may have adverse ef-
fects.
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Erratum

Newborn dried bloodspot screening: mapping the clinical and public health components and activities: Erratum

In the article that appeared on page 418 of volume 11, issue 6, the author list was incomplete. The author list should have appeared
as follows: Alan R Hinman, MD, MPH, Marie Y. Mann, MD, MPH, and Rani H. Singh, PhD, RD, on behalf of the NDBS
Business Process Analysis Workgroup. This error has been noted in the online version of the article, which is available at
www.geneticsinmedicine.org.

REFERENCE

Hinman AR, Mann MY, Singh RH. Newborn dried bloodspot screening: mapping the clinical and public health components and
activities. Genet Med 2009;11:418–424.

Mihaescu et al. Genetics IN Medicine • Volume 11, Number 8, August 2009

594 © 2009 Lippincott Williams & Wilkins


	Erratum
	References


